
www.allitebooks.com

http://www.allitebooks.org

Entity Framework Tutorial
Second Edition

A comprehensive guide to Entity Framework with
insights into its latest features and optimizations
for responsive data access in your projects

Joydip Kanjilal

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Entity Framework Tutorial
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2008
Second edition: August 2015

Production reference: 1190815

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-001-2

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Joydip Kanjilal

Reviewers
Konstantinos Athanasoglou

Abhishek Luv

Jason De Oliveira

Nicholas Suter

Commissioning Editor
Kevin Colaco

Acquisition Editors
Kevin Colaco

Douglas Paterson

Content Development Editor
Riddhi Tuljapurkar

Technical Editor
Prajakta Mhatre

Copy Editors
Charlotte Carneiro

Ameesha Smith-Green

Project Coordinator
Sanchita Mandal

Proofreader
Safis Editing

Indexer
Tejal Soni

Graphics
Disha Haria

Jason Monteiro

Abhinash Sahu

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Joydip Kanjilal has won a Microsoft Most Valuable Professional (MVP) award
in ASP.NET. He is a speaker and author of several books and articles. He has over
18 years of industry experience in IT, with more than 12 years in Microsoft .NET
and its related technologies. Joydip is currently working as a Principal Architect
at SenecaGlobal IT Services Private Limited, Hyderabad. He has been selected as
an MSDN Featured Developer of the Fortnight (MSDN) a number of times and has
also been a Community Credit Winner at www.community-credit.com several times.
He has authored the following books:

•	 ASP.NET Web API: Build RESTful Web Applications and Services on the .NET
Framework by Packt Publishing

•	 Visual Studio 2010 and .NET 4 Six-in-One by Wrox Publishers
•	 ASP.NET 4.0 Programming by Mc-Graw Hill Publishing
•	 Entity Framework Tutorial by Packt Publishing
•	 Pro Sync Framework by APRESS
•	 Sams Teach Yourself ASP.NET Ajax in 24 Hours by Sams Publishing
•	 ASP.NET Data Presentation Controls Essentials by Packt Publishing

He has authored more than 250 articles for some of the most reputable sites,
such as www.msdn.microsoft.com, www.code-magazine.com, www.asptoday.com,
www.devx.com, www.ddj.com, www.aspalliance.com, www.aspnetpro.com,
www.sql-server-performance.com, www.sswug.com, and so on. A lot of these
articles have been selected at www.asp.net, Microsoft's official site on ASP.NET.

He has years of experience in designing and architecting solutions for various
domains. His technical strengths include C, C++, VC++, Java, C#, Microsoft .NET,
AJAX, WCF, web-based APIs, REST, SOA, design patterns, SQL Server, operating
systems, and computer architecture.

www.allitebooks.com

www.community-credit.com
www.msdn.microsoft.com
www.code-magazine.com
www.asptoday.com
www.devx.com
www.ddj.com
www.aspalliance.com
www.aspnetpro.com
www.sql-server-performance.com
www.sswug.com
www.asp.net
http://www.allitebooks.org

He can be contacted at:

•	 http://aspadvice.com/blogs/joydip

•	 http://www.infoworld.com/blog/microsoft-coder

•	 Website: www.joydipkanjilal.com
•	 Twitter: https://twitter.com/joydipkanjilal
•	 Facebook: https://www.facebook.com/joydipkanjilal
•	 LinkedIn: http://in.linkedin.com/in/joydipkanjilal

Writing a book has always been a rewarding experience for me.
My special thanks to the entire Packt team for providing me with
the opportunity to author this book—and turn this idea into reality.
I am also thankful to the entire management team at SenecaGlobal
for their continued support. I was delighted by the warm welcome
I received when I joined the company and also for the inspiration
I received from the management team here. I am very happy to be
a part of this wonderful team.

My deepest respect and gratitude to my parents for their love,
blessings, and encouragement. My special thanks to my wife for
her continued inspiration and support. I am also thankful to my
sister, and little Jini in particular, for their support.

Thank you all so much!

http://aspadvice.com/blogs/joydip
http://www.infoworld.com/blog/microsoft-coder
www.joydipkanjilal.com
https://twitter.com/joydipkanjilal
https://www.facebook.com/joydipkanjilal
http://in.linkedin.com/in/joydipkanjilal

About the Reviewers

Konstantinos Athanasoglou holds a diploma and an MSc in electronics and
computer engineering from the Technical University of Crete, Greece. He has been
involved in speech and web application development on the .NET stack for more
than 5 years.

He participated in the architecture and development of an automated framework
that enabled the rapid prototyping of speech applications.

He is now part of the core development team at AirFastTickets, a rapidly growing
online travel agency with offices in New York, Piraeus, London, Frankfurt, and
Istanbul. It is now a major OTA in Greece.

Abhishek Luv received his BCA degree and completed a course on Startup
Engineering taught at Stanford University via Coursera.

He has been developing and designing websites and web applications for the last
3 years. During these years, Abhishek has been involved in Microsoft technologies
such as C#, ASP.NET, ASP.NET MVC, SQL Server, Entity Framework, Orchard
CMS, and many more.

He is currently working as a freelance .NET web developer and an instructor at
Develop2Deploy (http://develop2deploy.com/).

He is also the founder of the Orchard CMS Indian Community website
(http://orchardproject.net.in/) and a contributor to the official Orchard
CMS documentation website (http://docs.orchardproject.net/Contributors).
He has created numerous online courses on Orchard CMS (https://www.udemy.
com/courses/search/?q=orchard).

http://develop2deploy.com/
http://orchardproject.net.in/
http://docs.orchardproject.net/Contributors
https://www.udemy.com/courses/search/?q=orchard
https://www.udemy.com/courses/search/?q=orchard

He loves sharing his knowledge and experiences via his online podcast at
http://www.softwaredevelopmentpodcast.in/, teaching courses on web
development at www.udemy.com, and coaching and mentoring college students
and newbie developers.

Outside of his normal day-to-day activities as a freelance .NET web developer and
instructor, he is also a cofounder of a video training start-up called The Video Trainer
(https://www.thevideotrainer.in/) where he trains and coaches individuals,
professionals, and teaches them how to create their own stunning videos for the
Web. You can reach him at abhishek@abhishekluv.in.

Jason De Oliveira works as a CTO for Cellenza (http://www.cellenza.com),
an IT consulting company specialized in Microsoft technologies and the Agile
methodology in Paris, France. He is an experienced manager and senior solutions
architect, with a lot of skills in software architecture and enterprise architecture.

Jason works for big companies and helps them realize complex and challenging
software projects. He frequently collaborates with Microsoft, and you can find him
quite often at the Microsoft Technology Center (MTC) in Paris.

He loves sharing his knowledge and experience via his blog by speaking at
conferences, writing technical books and articles in the technical press, giving
software courses (MCT), and coaching coworkers at his company.

Since 2011, Microsoft has awarded him with the Microsoft Most Valuable
Professional (MVP C#) award for his numerous contributions to the Microsoft
community. Microsoft seeks to recognize the best and brightest from technology
communities around the world with the MVP award. These exceptional and highly
respected individuals come from more than 90 countries, serving their local online
and offline communities and having an impact worldwide. Jason is very proud to
be one of them.

Feel free to contact him via his blog if you need any technical assistance or want to
exchange knowledge on technical subjects (http://www.jasondeoliveira.com).

http://www.softwaredevelopmentpodcast.in/
www.udemy.com
https://www.thevideotrainer.in/
http://www.cellenza.com
http://www.jasondeoliveira.com

Jason has worked on the following books:

•	 .NET Framework 4.5 Expert Programming Cookbook (English) by Packt Publishing
•	 WCF 4.5 Multi-Layer Services Development with Entity Framework (English) by

Packt Publishing
•	 .NET 4.5 Parallel Extensions Cookbook (English) by Packt Publishing
•	 Visual Studio 2013: Concevoir, développer et gérer des projets Web, les gérer avec

TFS 2013 (French)

I would like to thank my lovely wife, Orianne, and my beautiful
daughters, Julia and Léonie, for supporting me in my work and
for accepting the long days and short nights during the week,
sometimes even during the weekend. My life would not be the
same without them!

Nicholas Suter has been a full-stack Agile software developer and architect,
specialized in Microsoft technologies since 2003. He has also been a .NET and C#
MVP since 2014, and works as much in a web environment as in Windows client
applications for Cellenza, a consulting firm in Paris, France.

He focuses on software patterns and practices in Agile, clean code, and craftsmanship
environments. He wrote a book on web development called Visual Studio 2013:
Concevoir, développer et gérer des projets Web, les gérer avec TFS 2013 (French). He also
writes for his personal blog (http://www.nicholassuter.com) and Cellenza's blog
(http://blog.cellenza.com).

http://www.nicholassuter.com
http://blog.cellenza.com

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 vii
Chapter 1: Introducing the ADO.NET Entity Framework	 1

What you should know	 3
Looking back	 3
What is the ADO.NET Entity Framework?	 5

Is Entity Framework just another ORM?	 6
A comparative analysis of Entity Framework and other ORM tools	 7

LINQ to SQL and .dbml files	 11
Entity Framework architectural components	 11

The Entity Data Model	 12
How is the EDM represented?	 15
The Object Model (O-Space)	 16
LINQ to Entities	 17
Entity Client	 17
Entity SQL	 18

Avoiding complex joins	 19
The Object Services Layer	 20
Features and benefits at a glance	 21

System requirements	 22
Support for persistence ignorance	 22
Support for T4 code generation	 23
Support for lazy loading	 23
Support for POCO change tracking	 23
Better n-tier support with self-tracking entities	 24
Support for code-first, model-first, and database-first approaches	 24
Support for built-in functions and UDF support	 25
Support for model-defined functions	 25
Enum support	 26

Table of Contents

[ii]

Spatial data types support	 27
Other enhancements	 27

Performance improvements in Entity Framework 6	 28
New features in Entity Framework 7	 30
Summary	 30

Chapter 2: Getting Started	 31
Designing the UserAuthentication database	 33
Creating the EDM	 34

Creating the Entity Data Model using the ADO.NET Entity Data
Model Designer	 35
Creating Entity Data Model using the EdmGen tool	 41

The DataSource controls	 44
The ObjectDataSource control	 44
The SqlDataSource control	 45
The SiteMapDataSource control	 45
The XMLDataSource control	 45
The LinqDataSource control	 46
The EntityDataSource control	 46

Implementing our first application using the Entity Framework	 46
Summary	 54

Chapter 3: Entities, Relationships, and the Entity Data Model	 55
Entities, entity types, and relationships in the EDM	 56

What is an entity?	 56
Defining entity sets in the EDM	 57
Extending the existing entity types to create derived entity types	 61
Association sets, associations, containment, and multiplicity	 63
What are entity containers?	 65

Exploring the Security EDM	 67
The Mapping Details window	 68
The Entity Model browser	 70
The EDM layers	 72

The CSDL schema	 72
The SSDL schema	 79
The MSL schema	 81

Entity classes	 85
Summary	 88

Chapter 4: Working with Stored Procedures in the
Entity Data Model	 89

Creating a database using model-first development	 90
Creating stored procedures	 105

Table of Contents

[iii]

Mapping stored procedures to functions in the EDM	 108
Mapping the create, update, and delete functions to entities in the EDM	 111
Mapping stored procedures with no entity set	 113

Executing stored procedures using the EDM	 113
Mapping stored procedures that return custom entity types	 114
Summary	 116

Chapter 5: Working with Entity Client and Entity SQL	 117
An overview of the E-SQL language	 118
From T-SQL to E-SQL	 118
Why E-SQL when I already have LINQ to Entities?	 119

Features of E-SQL	 120
Operators in E-SQL	 121

Arithmetic operators	 121
Comparison operators	 122
Logical operators	 122
Reference operators	 122
Type operators	 123
Set operators	 123
Operator precedence	 124

Expressions in E-SQL	 124
Query expressions in E-SQL	 124

Identifiers, variables, parameters, and types in E-SQL	 125
Row	 126
Collections	 126
Reference	 127

Canonical functions in E-SQL	 128
Mathematical functions	 128
Aggregate functions	 128
String functions	 129
Bitwise functions	 129
Date and time functions	 130

Data paging using E-SQL	 130
Working with the ADO.NET Entity Client	 131

Let's get into action	 133
Building the connection string	 133
Creating an entity connection	 134
Opening the connection	 134
Executing queries using the entity command	 135
Closing the connection	 136

Other operations with E-SQL	 138
Inserting a record using E-SQL	 138
Inserting a record with a foreign key constraint	 139
Retrieving native SQL from EntityCommand	 139
Transaction management in E-SQL	 140

Table of Contents

[iv]

Deferred, eager, and lazy loading	 142
Summary	 143

Chapter 6: Working with LINQ to Entities	 145
Introducing LINQ	 146

Why LINQ?	 146
Understanding the LINQ architecture	 147

LINQ to XML	 148
LINQ to SQL	 148
LINQ to Objects	 149
LINQ to Entities	 150

Querying data using LINQ to Entities	 151
LINQ to Entities and Entity Framework	 151
Differences between LINQ to Entities and LINQ to SQL	 152

Parallel LINQ	 153
Operators in LINQ	 153

Aggregation	 154
Projections	 155
Ordering	 155
Quantifiers	 156
Restriction	 156
Conversion	 157
Element	 157
Set	 158

Querying data using LINQ	 158
Expressions in LINQ to Entities	 161

Constant expressions	 162
Comparison expressions	 162
Initialization expressions	 164
Null comparisons	 165
Navigation properties	 165
Immediate and deferred query execution	 166
Retrieving entity data from the Security database	 168

Summary	 170
Chapter 7: Working with the Object Services Layer	 171

What are Object Services?	 172
Features at a glance	 174
The SecurityDbEntity's DbContext class	 174
Querying data as in-memory objects	 176
Using Entity Framework 7	 176

Performing CRUD operations on objects	 177
Attaching and detaching objects to and from ObjectContext	 178
Serializing and deserializing entity instances	 180

Table of Contents

[v]

Change tracking and identity resolution using ObjectContext	 182
Understanding the code-first, model-first, and database-first
approaches to domain design	 183

Using the code-first approach	 184
Using the model-first approach	 185
Using the database-first approach	 188

Inheritance in Entity Framework	 188
Table-per-Hierarchy	 189
Table-per-Type	 190
Table-per-Concrete Type	 190

Implementing complex types in the EDM	 192
State management, identity management, and relationship
management	 193
Reading objects from the Security database	 196
Inserting objects from the Security database	 197
Editing objects from the Security database	 198
Deleting objects from the Security database	 198
Summary	 199

Chapter 8: Working with WCF Data Services	 201
Introducing WCF Data Services	 202

How do WCF Data Services and Web Services differ?	 202
What is Representational State Transfer (REST)?	 202
Why use WCF Data Services?	 204

The features at a glance	 204
Exposing data as a service using WCF Data Services	 205
Why do we need REST?	 205

Resources in REST-based architecture	 207
The REST architectural constraints	 208

The client-server model	 208
Stateless	 208
Cacheable	 209
Code on demand	 209
The uniform interface	 209
Resource management	 209

REST attributes	 209
WebServiceHost	 210
WebHttpBinding	 210
WebHttpBehavior	 210
WebOperationContext	 210
WebMessageFormat	 211
The WebGet attribute	 211
The WebInvoke attribute	 212
UriTemplate	 212

Table of Contents

[vi]

REST-based Web Services	 213
What is the OData Protocol?	 214
Working with WCF Data Services and Entity Framework	 217
Working with OData Services using WCF and ASP.NET
MVC Framework	 222
Working with Protobuf WCF Services	 225

Protocol Buffers	 225
Creating Protobuf-net objects	 226
Integrating Protobuf.NET with Visual Studio	 227
Implementing the WCF Service	 227
Specifying binding information	 228

Summary	 229
Appendix: Advanced Concepts	 231

REST and REST-based service frameworks	 231
Ruby on Rails	 232
Restlet	 232
Django REST	 233
The Flickr REST API	 233
The Google API	 233
Yahoo Social REST APIs	 234
Exploring OData	 234

HTTP methods, request, and response codes	 236
Abbreviations	 238
New features in Entity Framework 7	 238
Suggested reading	 239

Index	 241

[vii]

Preface
The ADO.NET Entity Framework, the next generation of Microsoft's data access
technology, is an extended Object Relational Mapping (ORM) technology that makes
it easy to tie together the data in your database with the objects in your applications.
This is done by abstracting the object model of an application from its relational or
logical model. It is an extended ORM in the sense that it provides many additional
features that a traditional ORM does not.

This book is a clear and concise guide to the ADO.NET Entity Framework. Packed
with plentiful code examples, this book helps you learn the ADO.NET Entity
Framework and ADO.NET Data Services and build a better data access layer for
your application.

The intent of writing this book is updating you to the latest trends and developments
as far as Entity Framework is concerned.

What this book covers
Chapter 1, Introducing the ADO.NET Entity Framework, is an introduction to the basics
of the ADO.NET Entity Framework (EF), its usefulness, features, and benefits.

Chapter 2, Getting Started, discusses how you can get started with EF, create an Entity
Data Model (EDM), and write a program to query data.

Chapter 3, Entities, Relationships, and the Entity Data Model, gives a detailed explanation
of entities, relationships, and each of the sections of the EDM.

Chapter 4, Working with Stored Procedures in the Entity Data Model, provides a sample
application that illustrates how to perform CRUD operations against the EDM.

Chapter 5, Working with Entity Client and Entity SQL, discusses the Entity SQL query
language and how to work with the Entity Client provider.

Preface

[viii]

Chapter 6, Working with LINQ to Entities, includes a detailed discussion on LINQ to
Entities with many code examples.

Chapter 7, Working with the Object Services Layer, provides a detailed discussion on
the Object Services Layer and its helpful and useful features.

Chapter 8, Working with WCF Data Services, provides an introduction to WCF Data
Services, the REST architectural paradigm, and how these can be used with the
EDM to perform CRUD operations.

Appendix, Advanced Concepts, covers a few advanced concepts. These include: REST
and REST-based service frameworks and OData. We would also explore the HTTP
methods and the request and response codes. Lastly, we would take a look at the
new features in Entity Framework 7.

What you need for this book
To learn the concepts covered in this book, the reader should have a proper
understanding and working knowledge of the following:

•	 ADO.NET
•	 ASP.NET
•	 C#

To execute the code samples in this book, the following technologies should be
installed on your system:

•	 Visual Studio 2013 or later
•	 SQL Server 2012 or later
•	 Windows 7/Windows 8 or higher

Who this book is for
This book is for C# developers who want an easier way to create their data access
layer. You will need to be comfortable with ADO.NET, but you do not need to know
anything about the Entity Framework. Along the way, we will create some ASP.NET
applications, so familiarity with this will be helpful. The book is a clear and concise
guide to the ADO.NET Entity Framework 6 with plenty of real-life code examples.

Preface

[ix]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as
follows: "Entity Framework 6 now provides support for spatial data types using
DbGeography and DbGeometry types."

A block of code is set as follows:

public class User
 {
 public virtual Int32 UserID { get; set; }
 public virtual String UserName { get; set; }
 public virtual String CreatedBy { get; set; }
 public virtual DateTime CreatedDate { get; set; }
 public virtual String ModifiedBy { get; set; }
 public virtual DateTime ModifiedDate { get; set; }
 }

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

static void Main(string[] args)
 {
 DataContextDataContextvar context = new
 DataContext(GetConnectionString());
 context.CreateDatabase();
 }

Any command-line input or output is written as follows:

edmgen /mode:fullgeneration /c:"Data Source=.;Initial
Catalog=SecurityDB;User ID=sa;Password=sa1@3;" /p:SecurityDB

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"You can see that the Convert to Enum option is enabled."

Warnings or important notes appear in a box like this.

Preface

[x]

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[xi]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Introducing the ADO.NET
Entity Framework

Welcome to our journey into mastering the popular data access technology from
Microsoft named Entity Framework. At the time of writing, Entity Framework 7
hasn't been released—so we will use Entity Framework 6.x throughout this book but
at the same time discuss what's new in Entity Framework 7.

Object Relational Mapping (ORM) technology has been widely in use for over a
decade. ORMs are used to convert data between incompatible type systems. These
are tools that encapsulate calls to the underlying database and enable you to query
and manipulate data using an object-oriented paradigm.

The figure that follows illustrates the persistence layer that is responsible for reading
and manipulating data to and from the database. Now, this persistence layer can be
your ADO.NET library, a wrapper around the ADO.NET library, or an ORM:

Presentation Layer

Business Layer

Persistence Layer

Domain
Objects

Database

Introducing the ADO.NET Entity Framework

[2]

We will explore more on ORMs later in this chapter. The ADO.NET Entity
Framework (EF) is an extended and open source ORM technology from Microsoft
that abstracts the object model of an application from its relational or logical model.
That is, it isolates the object model from the way the data is actually represented
in the relational store. This framework makes the conceptual model real by using
an extended entity relationship model called the ADO.NET Entity Data Model.
In this book, we will examine Entity Framework 6 in order to leverage its existing
and enhanced features to design and implement applications that are robust, high-
performing, persistence, ignorant, and scalable. We will explore each of these
features as we read through the chapters of this book.

This chapter will give you an introduction to Entity Framework and also provide
you with a brief understanding of the related terminologies. We will revisit each of
the Entity Framework architectural components as we progress through this book.
Our journey through Entity Framework 6 has just begun!

In this chapter, we will cover the following points:

•	 An overview of Entity Framework
•	 Entity Framework architectural components:

°° The Entity Data Model
°° LINQ to Entities
°° Entity Client
°° Entity SQL
°° The Object Services Layer

•	 A comparative analysis of EF and other ORMs
•	 New features and enhancements in Entity Framework 6:

°° Support for persistence ignorance
°° Support for T4 code generation
°° Support for lazy loading
°° Support for POCO change-tracking
°° Better n-tier support
°° Support for model-first and development
°° Support for built-in functions and UDF
°° Support for model-defined functions
°° Support for enums
°° Support for spatial data types

Chapter 1

[3]

But, before we delve deep into this amazing technology from Microsoft, let's take a
quick look at the prerequisites to learning the concepts covered in this book.

What you should know
As Entity Framework 7 has not been released and isn't mature yet, we will use Entity
Framework 6.x in this book while discussing the features of Entity Framework 7 as
we move ahead.

To learn the concepts covered in this book, you should have a basic understanding
of the following:

•	 Programming using ADO.NET
•	 C# 5.0
•	 Using the Visual Studio 2013 IDE
•	 Working with the .NET console and web applications
•	 SQL Server 2012 or later

Looking back
Data-centric applications have two perspective layers. They are the data model and
the object model. While the data model defines the way data is defined and stored,
the object model defines how the same data will be represented to the user in the
presentation layer or how it is exposed to the other layers of the application. The
data model of the application usually deals with the storage and retrieval of the
application's data to and from the relational store.

The relational store is used for data persistence, consistency, concurrency, and
security. It contains the application's data and typically comprises a set of tables,
views, functions, procedures, and relationships. You typically use T-SQL to query
against the relational store, which returns result sets that contain columns and rows
of data.

However, the data returned doesn't necessarily match the application's object-
oriented programming model. Usually, we don't use the data returned in the same
form in which it is returned from the relational store. We write the necessary code to
transform the data returned from the relational store into business objects in the data
access layer of the application. Similarly, you need to write code to transform your
application's business objects into a form that can be persisted into your relational
store. But, what if the schema of the underlying relational store changes?

Introducing the ADO.NET Entity Framework

[4]

Here's exactly where an ORM fits in. The figure given next shows how objects in
an application can be mapped to the relational store by using a mapping layer.
This mapping layer is provided by the ORM. An ORM is a method of representing
the relational tables as entities in the object world. ORMs came onto the market to
provide you with a framework using which you can connect your applications to the
underlying database without having to write much code. Most importantly, you can
use ORMs to connect to any database, increase development productivity, ensure
database independence, and database portability.

Objects in
Memory

Object Object Object

Object Object Object

Object Object Object

Mapping Logic

Relational Database

O/R Mapping

Chapter 1

[5]

To bridge this apparent mismatch between the data and the object models, ORM
tools have evolved. They are used to reduce the code required to transform your
application's business objects into a form that can be persisted into the relational
store and vice-versa.

ORM

Database

Read()

Write()

Objects B

Read()

Write()

Objects A

Microsoft first released its ORM by the name of LINQ to SQL, which shipped with
.NET Framework 3.5 and Visual Studio 2008. However, LINQ to SQL was restricted
to working with SQL Server databases only. Entity Framework is an attempt by
Microsoft to provide you with an extended ORM built on top of the ADO.NET
provider model and enable you to connect to and work with any database.

What is the ADO.NET Entity Framework?
Entity Framework is a type of ORM. It is a development platform that provides a
layer of abstraction on top of the relational or logical model. In doing so, it isolates
the object model of the application from the way the data is actually stored in the
relational store. Developers can use the ADO.NET Entity Framework to program
against an object model rather than the logical or relationship model.

Introducing the ADO.NET Entity Framework

[6]

This is illustrated using the self-explanatory diagram that follows:

Entity
Framework

Database

Model Object

This level of abstraction is achieved using the Entity Data Model (EDM)—an
extended entity relationship model. The EDM reduces the dependency of your
domain object model on the database schema of the data store in use. We will
discuss more on this topic later in this chapter.

Developers can use the ADO.NET Entity Framework to work with domain-specific
properties such as employee name, employee address, contact details, and so on,
without having to be concerned with how the actual data is stored and represented in
the underlying data store. The framework can take care of the necessary translations
to either retrieve data from your data store or perform inserts, updates, and deletes.
Also, Entity Framework provides support to cache data automatically by default.

Is Entity Framework just another ORM?
The ADO.NET Entity Framework is an extended ORM technology from Microsoft.
We say it is an extended ORM because it has many additional features compared
to a typical ORM. ORMs often use metadata and factory classes to retrieve data or
collections of data.

Chapter 1

[7]

Factory classes are based on the factory design pattern and are used
to create instances of classes without exposing the instantiation logic
to the client.

On the contrary, using Entity Framework, you can easily map your data to
be accessible in a relational representation in the database to objects, no matter
how the mapping is implemented. You can expose different data views to your
application without having to change your relational schema. In essence, this allows
the applications to have their own view of the data. The applications can even reuse
the same views of data among themselves.

The major difference between Entity Framework and ORM tools is the EDM and the
former's ability to query data using strongly typed LINQ. You can even use Entity
SQL, a T-SQL-like query language to query the EDM, to execute dynamic queries. In
addition to what a typical ORM framework provides, the Entity Framework provides
and supports entity inheritance, entity composition, and a flexible, loosely-coupled,
three-tiered model consisting of the conceptual model, the mapping layer, and the
storage model. Please refer to the Appendix section for links to resources on this topic.

Entity Framework even enables you to extend the existing schema. In other words,
you can extend the generated entity classes to create your own custom entity classes.
You can define relationships of any kind such as one-to-one, one-to-many, and even
many-to-many.

A comparative analysis of Entity
Framework and other ORM tools
Data access strategies have changed over the years. From Remote Data Objects
(RDO), Data Access Objects (DAO), to ADO.NET, the industry has seen a
marked improvement in the way data is accessed these days.

ORM tools enable you to access data from persistent storage devices without
having to bother about how the underlying data is actually stored. NHibernate is
a lightweight ORM tool for .NET. It has a statically compiled counterpart called
Fluent NHibernate. Fluent NHibernate provides you with an XML-less, compile safe,
automated NHibernate mapper with LINQ support. Domain modeling is an area
where Entity Framework scores over NHibernate.

Introducing the ADO.NET Entity Framework

[8]

Consider the following entity class:

public class User
 {
 public virtual Int32 UserID { get; set; }
 public virtual String UserName { get; set; }
 public virtual String CreatedBy { get; set; }
 public virtual DateTime CreatedDate { get; set; }
 public virtual String ModifiedBy { get; set; }
 public virtual DateTime ModifiedDate { get; set; }
 }

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

The following class illustrates how you can create a mapping for the preceding class
by extending the generic ClassMap<T> class:

public class UserMap : ClassMap<User>
 {
 public UserMap()
 {
 Table("Users");
 Id(x => x.UserID).GeneratedBy.Identity();
 Map(x => x.UserName);
 Map(x => x.CreatedBy);
 Map(x => x.CreatedDate);
 Map(x => x.ModifiedBy);
 Map(x => x.ModifiedDate);
 }
 }

The following code example illustrates how you can create a data gateway for the
User entity class:

using FluentNHibernate;
using NHibernate;
using FluentNHibernate.Cfg.Db;
using FluentNHibernate.Automapping;
using NHibernate.Cfg;

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 1

[9]

using NHibernate;
using FluentNHibernate.Cfg.Db;
using FluentNHibernate.Automapping;
using NHibernate.Cfg;
using NHibernate.Tool.hbm2ddl;
using System.Reflection;
namespace Packt
{
 public static class DataManager
 {
 private static ISessionFactory sessionFactory = null;
 private static readonly string businessObjectsNamespace =
 "Packt.Entity.Mappings";
 private static readonly string connectionString = @"Data
 Source=JOYDIP-PC\SQLServer2014;
 Initial Catalog=Security;Integrated Security=True";
 private static ISessionFactory SessionFactory
 {
 get
 {
 if (_sessionFactory == null)
 {
 //Code to create a new session factory instance and load the
 business entities
 }
 return sessionFactory;
 }
 }

 public static ISession OpenSession()
 {
 return SessionFactory.OpenSession();
 }
 }
}

Note that you can make a call to DataManager.OpenSession() to open the database
connectivity session.

Entity Framework 6 is a mature ORM and comes up with many powerful features.
When you use Entity Framework, you can concentrate more on writing application
logic rather than writing the database connectivity code. This reduces development
time and effort greatly.

Introducing the ADO.NET Entity Framework

[10]

Language Integrated Query (LINQ) is a query translation pipeline that you can
use to integrate your queries into the object model. LINQ provides you with a
framework that you can use to access relational data in a strongly typed way.
LINQ provides a great way to query in-memory objects.

Here are the various forms that LINQ comes up with:

•	 LINQ to objects: This is used to query in-memory objects or a collection of
in-memory objects

•	 LINQ to XML: This is used to query data retrieved from XML data sources
•	 LINQ to SQL: This is used to query data retrieved from SQL Server database
•	 LINQ to DataSet: This is used to query data from a DataSet or a DataTable
•	 LINQ to Entities: This is used to query data exposed by the EDM

The LINQ library contains two primary interfaces that all generic collection classes
implement. These are the IEnumerable<T> interface and the IQueryable<T> interface.
While the former exposes an enumerator to iterate over a collection of a given type
T, the latter provides a functionality to query a data source that will implement this
interface. Also, IQueryable allows you to filter data on the server side.

The following diagram illustrates how these interfaces are related:

IList<T>
ICollection<T>
IEnumerable<T>
IList
ICollection
IEnumerable

List<T>
Generic Class

Interface

IList<T>
Generic Interface

ICollection<T>
Generic Interface
�
�

IEnumerable<T>
IEnumerable

IEnumerable<T>
Generic Interface
� IEnumberable

IList
Interface
�
�

ICollection
IEnumerable

ICollection
Interface
� IEnumerable

IEnumerable

�
�
�

ICollection<T>
IEnumerable<T>
IEnumerable

Important interfaces of the LINQ library

Chapter 1

[11]

LINQ to SQL and .dbml files
LINQ to SQL allows you create an object model that maps to the tables in the
relational database. The object relational mapping implementation of LINQ to SQL
handles the execution strategy of the SQL queries. A database markup language
file, also known as .dbml file, is generated by the Visual Studio IDE when you drag
and drop database tables from the solution explorer onto the LINQ to SQL design
surface. When each table is dragged on the design surface, a class is created for each
table. These classes are known as entity classes and they are partial classes.

Both LINQ to SQL and ORM share certain common behaviors in terms of designing,
mapping entities with relational database, and querying entities.

Developing non-LINQ to SQL data-centric applications may consume a lot time and
effort in trying to build custom components that will interact with the data source.
LINQ to SQL maps tables to classes, which helps architects to design a better n-tier
architecture, thus improving productivity.

The properties in the entity classes are mapped to the columns in the table with an
appropriate data type mapping scheme. Hence, a compile time check is performed
that reduces runtime errors.

Entity Framework architectural
components
Entity Framework comprises the following components:

•	 The Entity Data Model
•	 LINQ to Entities
•	 Entity Client
•	 Entity SQL
•	 The Object Services Layer

Introducing the ADO.NET Entity Framework

[12]

Note that the Conceptual Model Layer, Mapping Layer, and Logical Model Layer
are all parts of the EDM. The following image illustrates the layers of the ADO.NET
Entity Framework and how they are related to each other:

Entity SQL

The Conceptual Model Layer (Defined using .CSDL files)

LINQ to Entities

The Mapping Layer (Defined using .MSL files)

The Logical Model Layer (Defined using .SSDL files)

Database

Object Query

Entity SQL

Object Services

Entity Data Model

ADO.NET Entity Framework: the architectural components

We will now discuss each of the components of the Entity Framework technology
stack in the following sections.

The Entity Data Model
The Entity Data Model (EDM), an extended entity relationship model, is the core of
Entity Framework. You can generate an EDM using the EDMGen.exe command-line
tool or using the ADO.NET EDM Designer—a new Visual Studio template. We will
discuss how an EDM can be generated from a relational schema in the next chapter.

For additional information, please refer to http://msdn.microsoft.com/en-us/
library/bb896270(v=vs.110).aspx.

http://msdn.microsoft.com/en-us/library/bb896270(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/bb896270(v=vs.110).aspx

Chapter 1

[13]

The following image illustrates where exactly the EDM fits in:

The ADO.NET Entity Data Model

The Relational Data Store

.NET Objects or collection of .NET
Objects

The Entity Data Model

The EDM abstracts the logical or the relational schema and exposes the conceptual
schema of the data using a three-layered approach. It comprises the following layers:

•	 The Conceptual Model Layer or the Conceptual Data Definition Language
Layer (C-Space)

•	 The Mapping Layer or the Mapping Schema Definition Language layer
(C-S Space)

•	 The Storage Layer or the Logical Layer or the Store Space Definition
Language Layer (S-Space)

The following image illustrates the layers of the EDM:

The Mapping Layer or the C-S Mapping Layer (MSL)

The Logical or the S-Space (SSDL)
Comprises of Tables, Stored Procedures, Views and Functions
Queried using ADO.NET Data Providers
(SQLConnection, SQLCommand, SQLDataReader, SQLDataAdapter, etc. using T-
SQL or, using PL-SQL)

The ADO.NET Entity Data Model Layers

The Conceptual or the C-Space (CSDL)
Comprises of EntityContainer, EntitySets, AssociationSets, AssociationTypes,
EntityTypes, Relationships and Functions
Queried using EntitySQL or ESQL (EntityConnection, EntityCommand,
EntityDataReader)

The Entity Data Model layers

Introducing the ADO.NET Entity Framework

[14]

Let's explain each of these layers in detail:

•	 The Conceptual Layer or the C-Space Layer is responsible for defining
the entities and their relationships. It defines your business objects and
their relationships in XML files. The C-Space is modeled using CSDL and
comprises EntityContainer, EntitySets, AssociationSets, AssociationTypes,
EntityTypes, and functions. You can query this layer using Entity SQL or
ESQL (EntityConnection, EntityCommand, and EntityDataReader).

•	 The C-S Mapping Layer is responsible for mapping the conceptual and the
logical layers. That is, it maps the business objects and the relationships
defined in the conceptual layer with the tables and relationships defined
in the Logical layer. It is a mapping system created in XML, which links
or maps the conceptual and the Logical layers. The C-S Mapping Layer is
modeled using Mapping Storage Layer or the MSL.

•	 The Logical or the Storage Layer (also called the S-Space) represents the
schema of the underlying database. This comprises tables, stored procedures,
views, and functions. It is modeled using SSDL and queried using the
database providers. A database provider is an API to connect to and perform
CRUD operations against a database. As an example, if the database in use
is SQL Server, the ADO.NET data provider for SQL Server will be used.
Hence, we use SQLConnection, SQLCommand, SQLDataReader, and
SQLDataAdapter using T-SQL or PL-SQL if our data store is a SQL database.

Chapter 1

[15]

Here is what a typical EDM looks like:

Designation Employee
ProvidentFund

Salary

Department

Properties

Properties

Properties

Properties

Properties

Properties

Properties

Properties

Properties

Properties

Employees

Employees

Employee

Employee

PFID
EmployeeID

PFAmount

SalaryID

EmployeeID

Basic
Allowance
PFID
Tax
GrossSalary

NetSalary

EmployeeID

FirstName
LastName
Address
Phone
DepartmentID

JoiningDate

LeavingDate

DesignationID

PFID

Department
Designation

ProvidentFunds
Salaries

DepartmentID
DepartmentName

DepartmentID
DepartmentName 1 *

1 *

1 *

1 *

An ADO.NET Entity Data Model at a glance

How is the EDM represented?
The EDM uses the following three types of XML files to represent the C-Space,
C-S Space, and the S-Space respectively:

•	 Conceptual Schema Definition Language (.CSDL): This represents the C-S
Space and is used to map the entity types used in the conceptual model

•	 Mapping Schema Language (.MSL): This represents the C-S Space and is
used to map the logical model to the conceptual model

•	 Store Schema Definition Language (.SSDL): This represents the S-Space
and is used to map the schema information of the Logical layer

Introducing the ADO.NET Entity Framework

[16]

If you use the ADO.NET EDM Designer tool to generate your EDM, you
will have one .edmx file that contains the CSDL, MSL, and SSDL sections
bundled into one single file. At runtime, the .csdl, .msl, and .ssdl
files are created in the application's output directory.

These files store the metadata information as XML for each of the preceding layers.

You can also create abstract and complex types in your EDM. You can
derive from an abstract type to create sub-types, but no instance of the
abstract type can be created. You can also create complex types. That is,
types that don't have any identity of their own. A typical example of a
complex type is the Address type.

We will skip further discussion on each of the sections of an EDM until Chapter 3,
Entities, Relationships, and the Entity Data Model.

The Object Model (O-Space)
When working with Entity Framework, you will have an Object Model on top
of all the EDM layers. You need to model the Object Model using .NET objects.
The following figure illustrates how the Object Model fits in with the EDM layers:

The Object Model or the O-Space

The O-C Mapping Layer

The Mapping Layer or the C-S Space (Modeled using MSL)

The Logical Model or the S-Space (Modeled using SSDL)

The Conceptual Model or the C-Space (Modeled using CSDL)

The Object Model and its relationship with other layers

Chapter 1

[17]

The Object Model layer contains .NET objects and a collection of .NET objects, types,
properties, and methods. You can use the Object Model or the O-Space Model to
query your business objects, or the collections of your business objects, using LINQ
to Entities or Entity SQL. The C-Space and O-Space models are actually mapped by
the O-C Mapping Layer using code attributes applied to the O-Space Model.

LINQ to Entities
LINQ is a query translation pipeline that has been introduced as part of the C#
3.0 library. It comprises a set of query operators for different data sources (LDAP,
objects, CSV, XML, entities, SQL, and so on). It is an extension of the C# language
(it's actually a series of extension methods) and provides a simplified framework to
access relational data in a strongly typed, object-oriented manner.

LINQ to Entities is a Microsoft technology that enables you to query your business
objects from within the language in a strongly typed manner. You can use LINQ to
Entities, a superset of LINQ to SQL, to query data against a conceptual data model,
namely, the Entity Data Model. You will learn more about LINQ and LINQ to
Entities in Chapter 6, Working with LINQ to Entities.

Here is an example of a typical LINQ to Entities query:

AdventureWorksEntities ctx = new AdventureWorksEntities();
 var query = from e in ctx.Employees
 select e;
 foreach (var employee in query)
 Console.WriteLine (employee.EmployeeID);

LINQ to Entities rests on top of Entity Framework's Object
Services Layer and the LINQ to Entities queries are internally
translated to canonical query trees. This, in turn, gets converted
internally to corresponding SQL queries in a form expected by
your underlying database.

Entity Client
The Entity Framework allows you to write programs against the EDM and also add
a level of abstraction on top of the relational model. This isolation of the logical view
of data from the Object Model is accomplished by expressing queries in terms of
abstractions using an enhanced query language called Entity SQL.

Introducing the ADO.NET Entity Framework

[18]

EntityClient, the gateway to entity-level queries, is the Entity Framework's
counterpart of ADO.NET's SQL client or Oracle client that uses Entity SQL or E-SQL
to query the conceptual model. You create a connection using the entity connection,
execute commands through entity commands, and retrieve the result sets as entity
data readers. The MSDN states:

 "The EntityClient provider is a data provider used by Entity Framework
applications to access data described in a conceptual model."

Entity SQL
Entity SQL is a data store independent derivative of T-SQL that supports entity
inheritance and relationships. You can use it to query data using the conceptual
schema. You can even build your own dynamic queries. These E-SQL queries are
internally translated to data store dependent SQL queries. This translation of the
E-SQL queries to their data store-specific query language like T-SQL, (it doesn't
need to be only T-SQL, however, it is the supported one), is handled by the Entity
Framework. Entity SQL or E-SQL may not be as strongly typed as LINQ is, but you
have the flexibility of executing dynamic queries using it, much like T-SQL.

Strongly typed data access is one of the most striking features of LINQ.
LINQ queries are checked at compile time. This is unlike SQL queries,
which are only detected at runtime.

But, why do you need Entity SQL when you have LINQ to Entities to query data
through your EDM? You can, using Entity SQL, compose queries that are difficult to
determine until the time the query is executed. On a different note, Entity SQL is a
full text-based query language that you can use in much the same way as you use
the ADO.NET data providers.

Here is an example that shows how you can use Entity SQL to insert data into
your applications:

using (EntityConnection conn = new
EntityConnection("Name=PayrollEntities"))
 {
 try
 {
 conn.Open();
 EntityCommand cmd = conn.CreateCommand();
 cmd.CommandText =
 "PayrollEntities.AddNewEmployee";
 cmd.CommandType = CommandType.StoredProcedure;

Chapter 1

[19]

 cmd.Parameters.AddWithValue("FirstName",
 "Joydip");
 cmd.Parameters.AddWithValue("LastName",
 "Kanjilal");
 cmd.Parameters.AddWithValue("Address",
 "Hyderabad");
 cmd.Parameters.AddWithValue("DepartmentID",
 4);
 cmd.ExecuteNonQuery();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }
 }

To query data from the EDM, you have three choices—Entity
SQL, LINQ to Entities, and Object Services.

Avoiding complex joins
You can use Entity SQL to avoid complex joins as you will typically be querying
against a conceptual model of the data. As an example, if we want to display
employee names and the department names in which they work, we would have to
join the information of the Employee and the Department tables and then filter the
unwanted columns to retrieve only the information that is required. Such traversals
become a nightmare as you add additional tables and therefore require more
complex joins.

When you implement your Object Model using object-oriented programming
languages, you expose the object's relationships to other objects of its kind using
properties. This is in contrast to the approach we just discussed. Hence, designing
an Object Model using this approach is cumbersome. This is exactly where Entity
Framework fits in; it represents the conceptual and logical model of data while
using grammar that is common to both.

Here is a code snippet that explains how you can use Entity SQL to avoid complex
joins in your application's code. The following T-SQL query can be used to retrieve
employee data split across three tables, namely, Employee, Department, and Salary:

Select Employee.FirstName, Employee.LastName,
Department.DepartmentName, Salary.Basic

Introducing the ADO.NET Entity Framework

[20]

from Employee
INNER JOIN
Department on Department.DepartmentID = Employee.DepartmentID
INNER JOIN
Salary on Salary.EmployeeID = Employee.EmployeeID

This is how you would use Entity SQL to achieve the same result:

Select FirstName, LastName, DepartmentName, Basic from Employee

In the previous example, EmployeeData is an entity that has been derived from the
Employee, Department, and Salary entities.

The Object Services Layer
As well as querying the conceptual model, you might, at some point, have to work
with entities such as in-memory objects or a collection of in-memory objects. To do
this, you need Object Services. You can use it to query data from almost any data
store, and with less code.

You can query data from the EDM by either using Object Services or
EntityClient. However, if you require change tracking, be aware that only
Object Services provides this feature. Note that in either case, the ADO.NET
data providers are responsible for talking to the underlying database.

Note that the Object Services Layer internally uses an ObjectQuery object for query
processing. To use object services, you should include the System.Data.Objects
and System.Data.Objects.DataClasses namespaces.

Here is an example that shows how you can use Object Services to retrieve data:

using (ObjectContext ctx = new ObjectContext("Name=
PayrollEntities"))
 {
 ObjectQuery<Employee> data =
 ctx.CreateQuery<Employee>("PayrollEntities.
Employees");

 foreach (Employee emp in data)
 {
 Console.WriteLine(emp.EmployeeID);
 }
 }

Chapter 1

[21]

In addition to enabling you to perform create, read, update, and delete (CRUD)
operations, the Object Services Layer provides the following additional services:

•	 Change tracking
•	 Lazy loading
•	 Inheritance
•	 Optimistic concurrency
•	 Merging data
•	 Identity resolution
•	 Support for querying data using Entity SQL and LINQ to Entities

You will learn more about Object Services later in the book. The Object Services
Layer leverages an Object Query object internally to process the data. Note that
the Object Services Layer supports querying data using both Entity SQL and LINQ
to Entities.

Features and benefits at a glance
Here is a quick look at some of the features and benefits of Entity Framework:

•	 It provides support for an increased level of abstraction on top of the
underlying data store

•	 It provides support for extensibility and seamless querying of data using
Entity SQL and LINQ

•	 It is a flexible schema that can be used to store the mapping information
•	 There is a reduction in the amount of Kilo Lines of Code (KLOC) needed

to write data access code in your applications
•	 It contains a powerful Object Services Layer
•	 It provides support for a full text-based query language
•	 It provides support for persistence ignorance
•	 IT provides support for lazy loading

KLOC refers to Kilo Lines of Code, a unit of measuring the amount of
source code in your programs.

Introducing the ADO.NET Entity Framework

[22]

System requirements
To run the programs given in this book, you should have the following elements
installed on your system:

•	 Visual Studio.NET 2012 or higher
•	 SQL Server 2014 or higher

Entity Framework 6.0 can be downloaded from NuGet at
https://entityframework.codeplex.com/
releases/view/87028.

Note that Entity Framework 6.0 already ships with Visual Studio 2013, so there is no
need to download it if you use this version of Visual Studio.

Now let's take a quick look at each of these new features. We will explore each of
these features in detail as we move through the chapters.

Support for persistence ignorance
Support for persistence ignorance was introduced in Entity Framework 4.0.
Persistence ignorance, as the literal meaning implies, is a concept that enables you to
build your applications in a way that can just ignore the underlying data store in use.
In essence, you can build applications that can have different persistent technology
in future.

You can now create your own Plain Old CLR Objects (commonly known as POCO)
that are decoupled from any specific persistence technology. To provide support for
POCO, all you need to do is just turn off code generation in the model in your Visual
Studio 2013 IDE.

You can simply clear the values of the Custom Tool property of your EDM and save
it again. Once you have done this, you have to create your own custom object context
by deriving your custom object context class from the ObjectContext class. Then
you can define the data members and properties in your custom object context class
as per your needs.

https://entityframework.codeplex.com/releases/view/87028
https://entityframework.codeplex.com/releases/view/87028

Chapter 1

[23]

Support for T4 code generation
T4 is a code generation technology that was introduced in Visual Studio 2008. T4
templates not only give you advantage to customize the generated code, they also
generate less code, concealing a lot of redundant functions that were present in the
old generated code. Entity Framework 6 provides support for T4 code-generation
templates. You can also customize these templates as needed.

Support for lazy loading
Lazy loading is a concept that enables an entity to be loaded late— it's loaded on
demand actually. Entity Framework 6 provides better support for lazy loading. To
enable deferred loading (it is turned off by default), you should make use of the
DeferredLoadingEnabled property. Please check out this URL for more information
on lazy loading http://msdn.microsoft.com/en-us/library/vstudio/
dd456846(v=vs.100).aspx.

Deferred loading works with both code-generated entities as well as your
Plain Old CLR Objects—commonly known as POCO entities.

Support for POCO change tracking
Entity Framework 6 enables you to easily track changes to POCOs. Note that Entity
Framework 6.0 provides support for the deferred or lazy loading of entities with
POCO classes through the usage of proxy types. Here is an example:

var result = (from emp in PayrollDataContext.Employee
.Include("Department") where emp.DepartmentID == 12 select
emp).Single();

Please check out this URL to find out more about lazy loading:

http://msdn.microsoft.com/en-us/library/vstudio/dd456846(v=vs.100).
aspx

We will explore more about POCO classes and lazy loading later in this book.

http://msdn.microsoft.com/en-us/library/vstudio/dd456846(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/vstudio/dd456846(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/vstudio/dd456846(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/vstudio/dd456846(v=vs.100).aspx

Introducing the ADO.NET Entity Framework

[24]

Better n-tier support with self-tracking entities
Entity Framework 6 provides better n-tier support and support for self-tracking
entities. Self-tracking entities are those that enable each entity to track any changes
to themselves so that you can pass it across process boundaries and persist the entire
object graph. Entity Framework 6 includes T4 templates to generate entities that have
the ability to track their own changes on the client side.

Support for code-first, model-first, and
database-first approaches
Entity Framework 6 now enables you to generate your Data Model from
the conceptual model. You can now create your entities and then use Visual
Studio 2013 to generate the database based on a predefined conceptual model.

In the code-first approach, the domain model is first defined using POCO classes
and then the database is created from these classes. This approach is popular and
provides much more control over your code—you just need to define the database
mappings and leave the creation of the database entirely to Entity Framework.
Note that as your code drives the database, manual changes to the database are not
recommended in this approach.

The figure given next illustrates the three approaches and why and when each
should be used:

Use Model Designer?
Code First
Approach

Model First
Approach

Database
First

Approach

No

No

Yes

Yes

Yes

No

Use Database?

Use POCOs?

Chapter 1

[25]

In the model-first approach, you create your entities, relationships, and the inheritance
hierarchies directly on the design surface of the EDM Designer in Visual Studio and
then generate the database from the model designed. If you need additional features,
you can use partial classes. In essence, in this approach, the model drives and defines
the database. This is also known as the model-driven approach. This approach is good
for small projects, but with complex databases and large projects this is not a preferred
approach as you don't have much control over the database. Also, making manual
changes to the database schema is also not recommended.

In the database-first approach, you would create your database first and then
generate your model using the ADO.NET EDM Designer from this database.

Support for built-in functions and UDF
support
Entity Framework 6 provides support for you to use SQL Server functions directly in
your queries. Here is an example:

from emp in PayrollDataContext.Employee
where new[] {"january","february","march"}.Contains(SqlFunctions.
DateName("month", emp.JoiningDate))
orderby emp.EmployeeID
select new
{
 emp.EmployeeID,emp.JoiningDate
};

Support for model-defined functions
Entity Framework 6 now provides support for model-defined functions that can be
defined in the CSDL using eSQL. Note that model-defined functions support LINQ
to Entities and can also be called Object methods. Here is an example:

<Function Name="GetEmployeeAge" ReturnType="Edm.Int32">
 <Parameter Name="Employee" Type="Self.Employee" />
 <DefiningExpression>
 Edm.DiffYears(Employee.BirthDate, Edm.CurrentDateTime())
 </DefiningExpression>
</Function>.

In this section, we just gave you an introduction to the new features in Entity
Framework 6—we will cover details of each of these features in the forthcoming
chapters of this book.

Introducing the ADO.NET Entity Framework

[26]

Enum support
Enum support is a much-awaited feature that enables you to have enum properties
in your domain classes. In Entity Framework 6, you have enum support both in
the EF Designer as well as using a code-first approach. To create an enum in Entity
Framework 6, all you need is to create a scalar property of type Int32 in the EDM,
select it, right-click on it, and then select Convert to Enum. The following image
illustrates this:

In the preceding image, IsRetired has been introduced as a scalar property of type
Int32. You can see that the Convert to Enum option is enabled.

Chapter 1

[27]

Spatial data types support
Spatial data types are actually geography and geometry-related classes that allow
us to work directly with such data inside the SQL Server. Spatial data can be of two
types—the geometry data type that provides support for planar or Euclidean (flat-
earth) data, and geography data type that can store ellipsoidal (round-earth) data
such as GPS latitude and longitude coordinates. Entity Framework 6 now provides
support for spatial data types using the DbGeography and DbGeometry types. You
can include spatial data in your models both using the EF Designer, as well as
using code-first. You can find out more about spatial data types from this link:
http://technet.microsoft.com/en-us/library/bb964711.aspx.

Some of the new features in Entity Framework 6 such as enum support
and spatial data types will work with .NET Framework 4.5 and above.

Other enhancements
In Entity Framework 6, DbContext is the default generated context. It is not new
though. It is a wrapper around ObjectContext generated using T4 templates.
Here is an example:

 public AdventureWorksEntities()
 : base("name=AdventureWorksEntities")
 {
 }

 protected override void OnModelCreating(DbModelBuilder
 modelBuilder)
 {
 throw new UnintentionalCodeFirstException();
 }

 public virtual DbSet<Department> Departments { get; set; }
 public virtual DbSet<Employee> Employees { get; set; }
 public virtual DbSet<EmployeeDepartmentHistory>
 EmployeeDepartmentHistories { get; set; }
 public virtual DbSet<EmployeePayHistory>
 EmployeePayHistories { get; set; }
 public virtual DbSet<JobCandidate> JobCandidates { get;
 set; }
 public virtual DbSet<Shift> Shifts { get; set; }
 }

http://technet.microsoft.com/en-us/library/bb964711.aspx

Introducing the ADO.NET Entity Framework

[28]

The other enhancements in Entity Framework are shown as follows:

•	 Task-based asynchronous operation: This allows Entity Framework to
take advantage of .NET 4.5 asynchronous support with asynchronous
queries, updates, and so on. Entity Framework 6 now provides support for a
simplified approach to asynchronous programming. Entity Framework 6 can
now be used to run async queries and also save data asynchronously.

•	 Enhanced support for stored procedures and functions in code first: This
feature allows you to map stored procedures and database functions by
using the code-first APIs.

•	 Support for custom code first conventions: This is a feature that allows you
to write and register custom code conventions with code first.

Note that the third-party providers for Entity Framework 5 are not
compatible with Entity Framework 6. This implies that if you are using
the SQL Server or SQL Server Compact editions, you should update the
database providers.

Performance improvements in Entity
Framework 6
In Entity Framework 6, query performance has been improved a lot. One important
performance improvement is in precompiled queries. A compiled query is one
that is stored as a parsed tree in memory so that it needn't be regenerated with
every subsequent call. You can create compiled queries in two ways: creating an
ObjectQuery class with EntitySQL and also using the CompiledQuery.Compile
function. Compiling expression trees into SQL every time is an overhead particularly
for queries that are complex. This is exactly why compiled queries were introduced.

The earlier versions of Entity Framework contained the CompiledQuery class that
you could use to precompile the query and then execute the query as and when
needed. So, in essence, when using precompiled queries, the SQL to be executed is
figured out only once (during precompilation) and this is then reused each time the
compiled query is executed.

Note that if you are using CompiledQuery, you should make sure that
you are using the query more than once. This is because it is more costly
than querying data the first time.

Chapter 1

[29]

Now, what were the downsides? You cannot use CompiledQuery using the
DbContext API as it only works with ObjectContext. Note that the support for
compiled query was revoked from the DbContext API due to some technical
limitations. If you use a code-first strategy, you will most likely be opting for the
DbContext API. Thankfully, Entity Framework 6 solved this problem, so you no
longer need to make this choice.

With Entity Framework 6, you have a feature called auto-compiled queries—this
works very different from the way CompiledQuery works. You no longer need to
write code to compile each query and then invoke as needed. How does it work
then? Entity Framework stores the generated SQL in the cache using a background
thread and then as and when needed (based on the calls made), it searches the
compiled queries in the cache. This is illustrated in the following image:

Translate, Store Hash, Store
SQL and Return SQL

Return Hash (from Cache)

LINQ to Entities

Create Hash for the query

Add
Parameters

Is Hash
available?

Database

No

Yes

Auto-compiled query in Entity Framework

You can also turn off query caching if you need to. The new ObjectContext.
ContextOptions property allows you to control the default behavior of the query
compilation. This property is set to true by default, but you can set it to false to
turn off the auto-compilation of your queries. Here is an example:

dataContext.ContextOptions.DefaultQueryPlanCachingSetting = false;

Introducing the ADO.NET Entity Framework

[30]

If you are using DbContext, you should cast to IObjectContextAdapter, as shown
in the following code:

((IObjectContextAdapter)dataContext).ObjectContext.ContextOptions.
DefaultQueryPlanCachingSetting = false;

New features in Entity Framework 7
Entity Framework 7, a major redesign of the ORM, is the latest version of Entity
Framework with the vision of "New Platforms, New Data Stores."

Some of the striking features of this release include support for the following:

•	 Non-relational data stores and in-memory data: You can now use Entity
Framework with NoSQL databases as well.
Entity Framework 7 now provides support for the following data providers:

°° SQL Server
°° SQLite
°° Azure Table Storage
°° Redis
°° In memory (for unit testing)

•	 Windows Phone and Windows Store applications and the Linux and
Macintosh systems: Entity Framework 7 now provides support for
Windows Phone, Windows Store, and ASP.NET 5 and desktop applications.

•	 Unit testing: Entity Framework 7 now provides support to unit test your
applications against in-memory or memory-resident databases.

Summary
Entity Framework mainly addressees how easily you can persist and query your
data with many added services. You can use Entity Framework to focus on the
object model rather than the logical model. In other words, you can add a level
of abstraction on top of your relational store.

In this chapter, we explored Entity Framework and the architectural components of
Entity Framework, and provided a comparative analysis between Entity Framework
and other ORM tools. In the next chapter, you will learn how to get started with
Entity Framework.

[31]

Getting Started
In the previous chapter, we took a look at Entity Framework, including its
architecture and its features. We also had a look at the new and enhanced
features in Entity Framework 7. Note that Entity Framework 6.0 ships with
Visual Studio 2013, but you can also install it via NuGet if needed. Also, Entity
Framework 7 is yet to be released.

In this chapter, we will design our Security database, create an Entity Data
Model (EDM) on top of it, and then use the EntityDataSource control to bind
data exposed by the EDM to a GridView control.

The DataSource controls are those that are used to connect to a data source and
then retrieve data from those data sources. If you use DataSource controls, the
need of writing tedious code to perform Create, Read, Update, Delete (CRUD)
operations on data-based controls is eliminated. The EntityDataSource control
is a DataSource control that can connect to the data exposed by the EDM to
perform CRUD operations.

In this chapter, we will cover the following points:

•	 Designing the UserAuthentication database
•	 Creating an EDM for the UserAuthentication database
•	 Introducing the EntityDataSource control
•	 Implementing our first application using Entity Framework 6

Getting Started

[32]

The latest version of Entity Framework is Entity Framework 7. As of this writing,
Entity Framework 7 hasn't been released. It will be released as a "pre-release" at
the same time ASP.NET 5 is released. You will be able to install the pre-release
version of EF 7 using NuGet.

There are many changes coming up in Entity Framework 7—it is being rewritten
from the ground up. The major goals of Entity Framework 7 include its support for
new platforms and new data stores. So, support for additional providers will also
be included in Entity Framework 7:

We will start this chapter with a discussion on our UserAuthentication database
that we will be using throughout this book, followed by a discussion on how we
can create an EDM using the Security database.

Chapter 2

[33]

Designing the UserAuthentication
database
Before we begin implementing a simple application that shows how data retrieved
from the EDM can be consumed, let's take a quick look at the EDM again:

The Conceptual Model Layer (Defined using .CSDL files)

Database

The Mapping Layer (Defined using .MSDL files)

The Logical layer (Defined using .SSDL files)

Object Services

Object Query

Entity SQL

Entity SQLLINQ to
Entities

As you can see in this diagram, our application needs to interact with the CSDL
layer. The SSDL layer will connect to the database (the Security database in
our example), and the mapping layer will map these two layers so that they can
communicate.

The Security database comprises of a list of the following tables:

•	 Users: This table contains the user details.
•	 UsersAuthentication: This table contains the user authentication details.
•	 UserAuthenticationTypes: This table contains user authentication type data.

User authentication type can be Windows, Forms, Passport, and Anonymous.

Getting Started

[34]

•	 UsersLoginHistory: This table contains data related to user login history;
that is, the user login history data of the user.

•	 UserRoles: This table contains the user role details.
•	 Roles: This table contains the role details.
•	 Controls: This table contains an entry per control (note that each control

is an object).
•	 ControlTypes: This table contains the control type data.

Creating the EDM
Now that the Security database is ready, we will explore how we can create an
EDM on top of the Security database.

Note that, before Entity Framework 7, there were two storage
models—the EDMX file format based on XML schema or
code. With Entity Framework 7, the EDMX file format will be
dropped—we will have only the code-based format. Interestingly,
this approach is also termed the "code-first only" approach.

You can create the Entity Data Model in one of two ways:

•	 Use the ADO.NET Entity Data Model Designer
•	 Use the command-line Entity Data Model Designer called EdmGen.exe

The first approach is preferred to the second. However, as we move through the
chapters of the book, we will explore how we can follow the code-first approach to
implement the model for our application that uses Entity Framework.

We will first take a look at how we can design an EDM using the ADO.NET Entity
Data Model Designer.

Chapter 2

[35]

Creating the Entity Data Model using the
ADO.NET Entity Data Model Designer
To create an EDM using the ADO.NET Entity Data Model Designer, follow these
simple steps:

1.	 Open Visual Studio.NET 2013 IDE, create a solution for a new web
application project as follows, and save it with a name.

2.	 Switch to the Solution Explorer, and navigate to Add | New Item... to create
a new Entity Data Model using Entity Data Model Wizard.

3.	 Next, select ADO.NET Entity Data Model from the list of templates
displayed, as shown in the following screenshot:

Creating a new ADO.NET Entity Data Model

4.	 Name the Entity Data Model SecurityDB, and click on Add.

Getting Started

[36]

5.	 Select Generate from database from Entity Data Model Wizard, as shown in
the following screenshot:

Generating the Entity Data Model from the database

Note that you can also use the Empty model template to
create the EDM yourself.

Chapter 2

[37]

If you select the Empty model template and click on Next, the following
screen appears:

Empty Entity Data Model Wizard

As you can see from the previous screenshot, you can use this template to
create the EDM yourself.

You can create the entity types and their relationships
manually by dragging items from the toolbox.

We will not use this template in our discussion here, so let's get to the
next step.

6.	 Click on Next in the Entity Data Model Wizard window shown earlier.
7.	 The modal dialog box will now appear and prompt you to choose

your connection.

Getting Started

[38]

8.	 Click on New Connection. Now you will need to specify the connection
properties and parameters for the database to connect to. In our example,
the database is Security.

We will use a dot to specify the database server name. This implies that
we will be using the database server of the localhost, which is the current
system in use. You can also specify the server name here if your database
resides on a different system. If your database resides on a different
server, you need to specify the server name here.

9.	 After you specify the necessary user name, password, and server name, you
can test your connection using the Test Connection button. When you do so,
the message Test connection succeeded gets displayed in the message box,
as shown in the following screenshot:

Testing the database connection

Chapter 2

[39]

Note that the entity connection string is generated automatically. This
connection string will be saved in the ConnectionStrings section of
your application's web.config file. This is what it will look like:

<connectionStrings>

 <add name="SecurityDBEntities"
connectionString="metadata=res://*/SecurityDB.
csdl|res:/
/*/SecurityDB.ssdl|res://*/SecurityDB.
msl;provider=System.Data.SqlClient;provider connection
string="data
source=.;initial catalog=SecurityDB;user
id=sa;password=sa1@3;MultipleActiveResultSets=True;App=
EntityFramework""
providerName="System.Data.EntityClient" />

 </connectionStrings>

10.	 Now, click on Next and specify the database objects you would like to
have in your model from the Choose Your Database Objects and Settings
window that is shown next:

Choosing the database objects to be used in the model

Getting Started

[40]

We will select all the tables of the Security database now. Refer to the
following screenshot:

Selecting the Database Objects

11.	 Lastly, click on Finish to generate the EDM for the Security database.

Your EDM has been generated and saved in a file named SecurityDB.edmx. We are
done creating our first EDM using the ADO.NET Entity Data Model Designer tool.

Chapter 2

[41]

When you open SecurityDB.edmx that we just created in the designer view, it will
appear as shown in the following image:

The SecurityDB Entity Data Model

In the next section, we will learn to create an EDM using the EdmGen.exe command-
line tool.

Creating Entity Data Model using the
EdmGen tool
We will now take a look at how to create a data model using the EDM generation
tool called EdmGen.

The EdmGen.exe command-line tool can be used to do one or more of the following:

•	 Generate the .cdsl, .msl, and .ssdl files as part of the EDM
•	 Generate object classes from a .csdl file
•	 Validate an EDM

Getting Started

[42]

The EdmGen.exe command-line tool generates the EDM as a set of three files: .csdl,
.msl, and .ssdl. If you have used the ADO.NET Entity Data Model Designer to
generate your EDM, the .edmx file generated will contain the CSDL, MSL, and the
SSDL sections. You will have a single .edmx file that bundles all of these sections into
it. On the other hand, if you use the EdmGen.exe tool to generate the EDM, you will
find three separate files with .csdl, .msl, or .ssdl extensions.

Here is a list of the major options of the EdmGen.exe command-line tool:

Option Description
/help Use this option to display help on all the

possible options of this tool. The short form is
/?

/language:CSharp Use this option to generate code using C#
language

/language:VB Use this option to generate code using VB
language

/provider:<string> Use this option to specify the name of the ADO.
NET data provider that you would like to use

/connectionstring:<connection
string>

Use this option to specify the connection string
to be used to connect to the database

/namespace:<string> Use this option to specify the name of the
namespace

/mode:FullGeneration Use this option to generate your CSDL, MSL,
and SSDL objects from the database schema

/mode:EntityClassGeneration Use this option to generate your entity classes
from a given CSDL file

/mode:FromSsdlGeneration Use this option to generate MSL, CSDL, and
entity classes from a given SSDL file

/mode:ValidateArtifacts Use this option to validate the CSDL, SSDL, and
MSL files

/mode:ViewGeneration Use this option to generate mapping views
from the CSDL, SSDL, and MSL files

/entitycontainer:<string> Use this option to specify the name of the Entity
Container to be used in the conceptual model

/project:<string> Use this option to specify the base name to be
used for all the artifact files (.csdl, .msl, and
.ssdl) to be generated. The short form of this
option is /p

Chapter 2

[43]

Note that you need to pass the connection string, and specify the mode and the
project name of the artifact files (the .csdl, .msl, and .ssdl files) to be created.
To create the EDM for our database, open a Visual Studio command window
and type in the following:

edmgen /mode:fullgeneration /c:"Data Source=.;Initial
Catalog=SecurityDB;User ID=sa;Password=sa1@3;" /p:SecurityDB

This will create a full Entity Data Model for our database. The output is shown in the
following screenshot:

Generating the Entity Data Model from the command line

You can also validate the SecurityDB model that was just created, using the
ValidateArtifacts option of the EdmGen command-line tool, as follows:

EdmGen /mode:ValidateArtifacts /inssdl:SecurityDB.ssdl
/inmsl:SecurityDB.msl /incsdl:SecurityDB.csdl

When you execute the preceding command, the output will be similar to what is
shown in the previous screenshot.

As you can see in the previous screenshot, there are no warnings or errors displayed.
So, our EDM is perfect.

The section that follows discusses the DataSource controls included in ASP.NET
and also the new EntityDataSource control, which was first introduced as part of
the Visual Studio.NET 2008 SP1 release. Note that the EntityDataSource control is
included as part of Visual Studio 2010 and onward.

Getting Started

[44]

The DataSource controls
The DataSource controls are those that can be bound to data from external data
sources. These data sources may include databases, XML files, or even flat files.
ASP.NET 2.0 introduced some DataSource controls with a powerful data binding
technique, so the need for writing lengthy code for binding data-to-data controls
has been eliminated.

In ASP.NET, the term data binding implies binding the controls
to data retrieved from a data source and providing read or write
connectivity between these controls and the data that they are
bound to.

A DataSource control acts like a layer in between your data source and the data
bound control. Data bound controls can be any control that actually interacts with
the end user while consuming the data services provided by the DataSource control
to which it is bound. It defines certain methods and properties that perform data-
specific operations like insert, delete, update, and select over the data exposed by
the DataSource control while at the same time abstracting the data source.

In the sections that follow, we will discuss these controls with special emphasis on
the EntityDataSource control.

The ObjectDataSource control
The ObjectDataSource control works with in-memory collections. It defines
properties like InsertMethod, DeleteMethod, UpdateMethod, and SelectMethod,
which perform basic data storage and retrieval operations. Appropriate methods
must be created and mapped to the properties that perform the required task. When
one of these properties is used, the ObjectDataSource control actually creates an
instance, invokes the appropriate method, and destroys as soon as it completes
its execution phase. ObjectDataSource are usually used in the business layer in
your application, which helps you to directly bind to the data bound controls at the
presentation layer.

Chapter 2

[45]

The SqlDataSource control
The SqlDataSource control allows you to perform standard data operations, like
insert, update, delete, and select on the data persisting in you relation database.
The SqlDataSource control is not meant only for the SQL Server database; it can
work with any managed ADO.NET provider, which means that you can use the
SqlDataSource control with different relational data sources. The SqlDataSource
control defines properties like InsertCommand, DeleteCommand, UpdateCommand, and
SelectCommand, for performing standard data operations, like insert, delete, update,
and select, over the data. The command properties need appropriate queries to be set
before using them. When updates are performed on a data control that connects to a
SqlDataSource control, the SqlDataSource control creates update parameters for all
columns, even though few columns are updated. The control also supports caching
capabilities, which assist in improving the performance of the application. For further
reading on this topic, please refer to this link: http://msdn.microsoft.com/en-us/
library/system.web.ui.webcontrols.sqldatasource(v=vs.110).aspx.

The SiteMapDataSource control
The SiteMapDataSource control allows you to bind the site map of your website. The
site map can represent a hierarchical structure. The SiteMapDataSource control needs
an appropriate root node to be specified in a given hierarchy. The SiteMapDataSource
control contains properties that allow you to specify the node locations. Primarily, the
SiteMapDataSource control is used for the data navigation purpose, which means that
you cannot perform standard data operations, like inserts, updates, deletes, sorting,
and paging of the data.

The XMLDataSource control
The XmlDataSource control is another kind of DataSource control. It basically
represents the data, which is in the form of XML. You can access the XML data from
the XmlDataSource control by connecting to a XML file or to XML data embedded
as a string within the DataSource control. Caching in the XmlDataSource control
is enabled by default for increasing the performance. You can perform standard
data operations like insert, delete, update, and select over the XML data that is
represented by the XmlDataSource control. However, operations like sorting and
paging are not supported by the XmlDataSource control. The control also provides
support for applying XML transformations through a XML style sheet.

http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.sqldatasource(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.sqldatasource(v=vs.110).aspx

Getting Started

[46]

The LinqDataSource control
The LinqDataSource control is a new control that has been introduced in ASP.NET
3.5. It extends the DataSource control and resides in the System.Web.UI.WebControls
namespace. It provides a new approach for binding LINQ models to web controls in
your ASP.NET applications. The LinqDataSource control provides properties and
events, using which you can perform operations like selecting, filtering, grouping,
and ordering against LinqDataSource. The LinqDataSource data control provides a
flexible mechanism to build a data control with wizard-based workflow. It allows you
to perform CRUD operations on the data over a LINQ model with minimal need to
write SQL queries.

The EntityDataSource control
The EntityDataSource control is an example of a data control that was first included
as part of the Visual Studio 2008 SP1 release, and can be used to bind data retrieved
from an EDM to the data bound controls of ASP.NET.

For further reading on this topic, please refer to this link: http://blogs.msdn.
com/b/webdev/archive/2014/01/30/announcing-preview-of-dynamic-data-
provider-and-entitydatasource-control-for-entity-framework-6.aspx.

Implementing our first application using
the Entity Framework
In this section, we will learn how to use the EDM and the EntityDataSource control
to implement our first program using the Entity Framework. We will use a GridView
control to display bound data.

http://blogs.msdn.com/b/webdev/archive/2014/01/30/announcing-preview-of-dynamic-data-provider-and-entitydatasource-control-for-entity-framework-6.aspx
http://blogs.msdn.com/b/webdev/archive/2014/01/30/announcing-preview-of-dynamic-data-provider-and-entitydatasource-control-for-entity-framework-6.aspx
http://blogs.msdn.com/b/webdev/archive/2014/01/30/announcing-preview-of-dynamic-data-provider-and-entitydatasource-control-for-entity-framework-6.aspx

Chapter 2

[47]

Let's first have the environment ready. I will run you through the steps to download
and install Entity Framework 6 now.

In the Solution Explorer, right-click on the project and select EntityFramework from
the list of NuGet packages, as shown in the following screenshot:

Getting Started

[48]

Click on Install to start downloading and installing Entity Framework 6:

Once Entity Framework 6 has been downloaded, click on Accept to start the
installation. After Entity Framework 6 has been successfully installed and the
necessary changes applied to your project, you are ready to start writing your
first application that makes use of this framework.

Chapter 2

[49]

Refer to the solution we created earlier using the Entity Data Model Designer. Now
follow these steps:

1.	 Drag and drop an EntityDataSource control from the toolbox onto your
Default.aspx web form:

The EntityDataSource Control

Getting Started

[50]

2.	 Now click on the Configure Data Source... option to specify the data source.
Refer to the following screenshot:

Configuring the EntityDataSource Control

3.	 Specify the ConnectionString and DefaultContainerName fields, and then
click on Next:

Chapter 2

[51]

4.	 Specify the fields you want to retrieve from the database table, and click on
Finish when done:

Configuring the data selection

5.	 Now drag and drop a GridView control from the toolbox onto the
Default.aspx web form.

Getting Started

[52]

6.	 Next, use the Choose Data Source option of the GridView control to associate
its data source with the EntityDataSource control we created earlier. Refer to
the following screenshot:

Configuring the Data Source property of the GridView control

This is how the markup code of the GridView control looks with its templates
defined. Note how the DataSourceID of the GridView control has been associated
with the EntityDataSource control we created earlier.

EntityDataSource control we created earlier.
<asp:GridView ID="GridView1" runat="server"
AutoGenerateColumns="False" DataSourceID="EntityDataSource1">
 <Columns>
 <asp:BoundField DataField="UserAuthenticationID"
 HeaderText="UserAuthenticationID" ReadOnly="True"
 SortExpression="UserAuthenticationID" />
 <asp:BoundField
 DataField="UserAuthenticationTypeID"
 HeaderText="UserAuthenticationTypeID"
 ReadOnly="True"
 SortExpression="UserAuthenticationTypeID" />
 <asp:BoundField DataField="UserID"
 HeaderText="UserID" ReadOnly="True"
 SortExpression="UserID" />
 <asp:BoundField DataField="UserName"
 HeaderText="UserName" ReadOnly="True"
 SortExpression="UserName" />
 </Columns>
</asp:GridView>

Chapter 2

[53]

The markup code of the EntityDataSource control looks like the following:

<asp:EntityDataSource ID="EntityDataSource1" runat="server"
ConnectionString="name=SecurityDBEntities"
DefaultContainerName="SecurityDBEntities" EnableFlattening="False"
EntitySetName="UserAuthentications"
EntityTypeFilter="UserAuthentication"
Select="it.[UserAuthenticationID], it.[UserAuthenticationTypeID],
it.[UserID], it.[UserName]">
</asp:EntityDataSource>

This is what the complete markup code of the Default.aspx web page looks like:

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
<title></title>
</head>
<body>
<form id="form1" runat="server">
 <asp:EntityDataSource ID="EntityDataSource1"
 runat="server" ConnectionString="name=SecurityDBEntities"
 DefaultContainerName="SecurityDBEntities"
 EnableFlattening="False"
 EntitySetName="UserAuthentications"
 EntityTypeFilter="UserAuthentication"
 Select="it.[UserAuthenticationID],
 it.[UserAuthenticationTypeID],
 it.[UserID], it.[UserName]">
 </asp:EntityDataSource>
 <asp:GridView ID="GridView1" runat="server"
 AutoGenerateColumns="False"
 DataSourceID="EntityDataSource1">
 <Columns>
 <asp:BoundField DataField="UserAuthenticationID"
 HeaderText="UserAuthenticationID" ReadOnly="True"
 SortExpression="UserAuthenticationID" />
 <asp:BoundField
 DataField="UserAuthenticationTypeID"
 HeaderText="UserAuthenticationTypeID"
 ReadOnly="True"
 SortExpression="UserAuthenticationTypeID" />
 <asp:BoundField DataField="UserID"
 HeaderText="UserID" ReadOnly="True"
 SortExpression="UserID" />

Getting Started

[54]

 <asp:BoundField DataField="UserName"
 HeaderText="UserName" ReadOnly="True"
 SortExpression="UserName" />
 </Columns>
 </asp:GridView>
</form>
</body>
</html>

When you execute the application, your output should be similar to what is shown
in the following image:

Data exposed by the Entity Data Model is displayed in the GridView control

Summary
In this chapter, we discussed how we can get started with Entity Framework.
You learned how to create an EDM and use it along with the EntityDataSource
control, to bind data to a GridView data control. In this chapter, we created
the UserAuthentication database and an EDM that exposed this database.
We also explored the EntityDataSource control and used it to bind data in
our first application that leverages Entity Framework 6.

In the next chapter, we will continue to explore the EDM including each of its
sections and will learn how they are related to each other.

[55]

Entities, Relationships, and
the Entity Data Model

In the last chapter, you learned how we can get started using Entity Framework.
As I mentioned in the earlier chapter, Entity Framework 7 is not yet released at the
time of writing. So, we will discuss Entity Framework 6.x in this book and highlight
the features of Entity Framework 7 wherever applicable.

In this chapter, you will learn about the Entity Data Model and its components.
The Entity Data Model is a conceptual model that can be used to design the data
access layer of your application. We will revisit the Security EDM we created
in the previous chapter and discuss each of the sections. Specifically, we will
discuss the following points:

•	 Entities, entity types, and relationships
•	 Introducing the Entity Data Model (EDM)
•	 The goals of EDM
•	 CSDL, MSL, and SSDL
•	 Customizing entities
•	 Customizing the EDM
•	 Exception handling with Entity Framework

In this chapter, we will discuss each of the sections of the EDM in detail. We will
start our discussion with our understanding of entities and their relationships. We
will then move ahead and discuss how they are mapped in the EDM using XML.

Entities, Relationships, and the Entity Data Model

[56]

Entities, entity types, and relationships in
the EDM
The EDM is an implementation of the Entity-Relationship model (commonly called
the E-R model). It depicts entities and their relationships. The EDM is a view of the
data store that your application will use.

LINQ to Entities

Object Services Entity Client

ADO.NET Entity Data Model

ADO.NET Entity Service Layer

ADO.NET Data Providers

Before we explore deeper into our Security DataModel, let's discuss entities, entity
types, relationships, and how these are all represented.

What is an entity?
An entity essentially models individual, real-world objects such as employees and
customers. Such objects contain information pertaining to the entity. An entity is
something that is uniquely definable, distinctly identifiable, and can have one or
more of the following properties:

•	 It should be identifiable easily through the data that it holds
•	 It should have properties that can hold scalar values that represent the

entity's data
•	 It should only contain data, not methods or operations on the data
•	 It can have entity relationship information such as how one entity is related

to another

Chapter 3

[57]

An entity refers to an instance of an EntityType, such as an employee, a customer,
or a product. The type of an entity is defined using an EntityType. An EntityType is
used to represent a particular type of data in the conceptual model—an employee, a
customer, order, or anything that is relevant to an application.

As an example, an employee belongs to a particular department, a product belongs
to a particular group, a customer buys a particular product, and so on. Each and
every EntityType is uniquely identified by a unique key also called the EntityKey.

The names of the nodes in the EDM, such as EntityKey and
EntityType, should not have any space in the middle. This is the
convention for the XML syntax used in EDM.

Any two entities can be related to each other using relationships. These relationships
are actually instances of Relationship Types. Such relationships can either be an
Association or Containment. The following code snippet illustrates how this is
defined in the EDM:

<Association Name="PublisherBook">
 <End Type="Publisher" Multiplicity="1">
 <End Type="Book" Multiplicity="*">
 <OnDelete Action="Cascade" />
 </End>
</Association>

Defining entity sets in the EDM
An EntitySet may be defined as a logical group of similar entities. In other words, all
the entities contained within an EntitySet are of the same, or derived from the same
EntityType. Here is how an EntitySet attribute is defined in the EDM:

<EntitySet Name="Controls" EntityType="SecurityDBModel.Control" />
<EntitySet Name="ControlTypes"
EntityType="SecurityDBModel.ControlType" />
<EntitySet Name="Roles" EntityType="SecurityDBModel.Role" />
<EntitySet Name="Users" EntityType="SecurityDBModel.User" />
<EntitySet Name="UserAuthentications"
EntityType="SecurityDBModel.UserAuthentication" />
<EntitySet Name="UserAuthenticationTypes"
EntityType="SecurityDBModel.UserAuthenticationType" />
<EntitySet Name="UserLoginHistories"
EntityType="SecurityDBModel.UserLoginHistory" />
<EntitySet Name="UserRoles" EntityType="SecurityDBModel.UserRole"
/>

Entities, Relationships, and the Entity Data Model

[58]

Note that the EntityType for the EntitySets are defined using the EntityType
attribute. Fine, but what does an EntityType attribute contain? An EntityType
attribute consists of one or more properties and a key. These properties can be non-
nullable, which implies that they are mandatory fields in the database.

Here is how the EntityType attributes are defined in the EDM:

<EntityType Name="Control">
 <Key>
 <PropertyRef Name="ControlID" />
 </Key>
 <Property Name="ControlID" Type="Int32" Nullable="false"
 p1:StoreGeneratedPattern="Identity" />
 <Property Name="ControlTypeID" Type="Int32"
 Nullable="false" />
 <Property Name="ControlName" Type="String"
 Nullable="false" MaxLength="Max" Unicode="true"
 FixedLength="false" />
 <Property Name="ParentControlID" Type="Int32"
 Nullable="false" />
 <NavigationProperty Name="ControlType"
 Relationship="SecurityDBModel.FK_Control_ControlType"
 FromRole="Control" ToRole="ControlType" />
 </EntityType>
 <EntityType Name="ControlType">
 <Key>
 <PropertyRef Name="ControlTypeID" />
 </Key>
 <Property Name="ControlTypeID" Type="Int32"
 Nullable="false" p1:StoreGeneratedPattern="Identity" />
 <Property Name="ControlTypeName" Type="String"
 Nullable="false" MaxLength="Max" Unicode="true"
 FixedLength="false" />
 <NavigationProperty Name="Controls"
 Relationship="SecurityDBModel.FK_Control_ControlType"
 FromRole="ControlType" ToRole="Control" />
 </EntityType>
 <EntityType Name="Role">
 <Key>
 <PropertyRef Name="RoleID" />
 </Key>
 <Property Name="RoleID" Type="Int32" Nullable="false"
 p1:StoreGeneratedPattern="Identity" />

Chapter 3

[59]

 <Property Name="RoleDescription" Type="String"
 Nullable="false" MaxLength="Max" Unicode="true"
 FixedLength="false" />
 </EntityType>

The following code snippet illustrates how the EntityType User is defined:

 <EntityType Name="User">
 <Key>
 <PropertyRef Name="UserID" />
 </Key>
 <Property Name="UserID" Type="Int32" Nullable="false"
 p1:StoreGeneratedPattern="Identity" />
 <Property Name="IsAdmin" Type="Boolean" />
 <Property Name="IsActive" Type="Boolean" />
 <Property Name="IsOnline" Type="Boolean" />
 <NavigationProperty Name="UserAuthentications"
 Relationship="SecurityDBModel.
 FK_UserAuthentication_User" FromRole="User"
 ToRole="UserAuthentication" />
 <NavigationProperty Name="UserLoginHistories"
 Relationship="SecurityDBModel.FK_UserLoginHistory_User"
 FromRole="User" ToRole="UserLoginHistory" />
 <NavigationProperty Name="UserRoles"
 Relationship="SecurityDBModel.FK_UserRole_Role"
 FromRole="User" ToRole="UserRole" />
 </EntityType>

The following code snippet illustrates how the entities UserAuthentication and
UserAuthenticationType are defined:

 <EntityType Name="UserAuthentication">
 <Key>
 <PropertyRef Name="UserAuthenticationID" />
 </Key>
 <Property Name="UserAuthenticationID" Type="Int32"
 Nullable="false" p1:StoreGeneratedPattern="Identity" />
 <Property Name="UserAuthenticationTypeID" Type="Int32"
 Nullable="false" />
 <Property Name="UserID" Type="Int32" Nullable="false" />
 <Property Name="UserName" Type="String" Nullable="false"
 MaxLength="Max" Unicode="true" FixedLength="false" />
 <Property Name="Password" Type="String" Nullable="false"
 MaxLength="Max" Unicode="true" FixedLength="false" />

Entities, Relationships, and the Entity Data Model

[60]

 <Property Name="UserEmail" Type="String" MaxLength="Max"
 Unicode="true" FixedLength="false" />
 <NavigationProperty Name="User"
 Relationship="SecurityDBModel.
 FK_UserAuthentication_User"
 FromRole="UserAuthentication" ToRole="User" />
 <NavigationProperty Name="UserAuthenticationType"
 Relationship="SecurityDBModel.
 FK_UserAuthentication_User
 AuthenticationType" FromRole="UserAuthentication"
 ToRole="UserAuthenticationType" />
 </EntityType>
 <EntityType Name="UserAuthenticationType">
 <Key>
 <PropertyRef Name="UserAuthenticationTypeID" />
 </Key>
 <Property Name="UserAuthenticationTypeID" Type="Int32"
 Nullable="false" p1:StoreGeneratedPattern="Identity" />
 <Property Name="UserAuthenticationTypeDescription"
 Type="String" Nullable="false" MaxLength="Max"
 Unicode="true"
 FixedLength="false" />
 <NavigationProperty Name="UserAuthentications"
 Relationship="SecurityDBModel.
 FK_UserAuthentication_User
 AuthenticationType" FromRole="UserAuthenticationType"
 ToRole="UserAuthentication" />
 </EntityType>

The UserLoginHistory table in the Security database stores the login history of the
users who have logged in to the system. Refer to the following code:

 <EntityType Name="UserLoginHistory">
 <Key>
 <PropertyRef Name="UserLoginID" />
 </Key>
 <Property Name="UserLoginID" Type="Int32"
 Nullable="false" p1:StoreGeneratedPattern="Identity" />
 <Property Name="UserID" Type="Int32" Nullable="false" />
 <Property Name="UserLoginDate" Type="DateTime"
 Nullable="false" Precision="3" />
 <NavigationProperty Name="User"
 Relationship="SecurityDBModel.FK_UserLoginHistory_User"
 FromRole="UserLoginHistory" ToRole="User" />
 </EntityType>

Chapter 3

[61]

The UserRole entity defines the roles for each user:

 <EntityType Name="UserRole">
 <Key>
 <PropertyRef Name="UserRoleID" />
 </Key>
 <Property Name="UserRoleID" Type="Int32"
 Nullable="false" p1:StoreGeneratedPattern="Identity" />
 <Property Name="UserID" Type="Int32" Nullable="false" />
 <Property Name="RoleID" Type="Int32" Nullable="false" />
 <NavigationProperty Name="User"
 Relationship="SecurityDBModel.FK_UserRole_Role"
 FromRole="UserRole" ToRole="User" />
</EntityType>

Note how the Name attribute and the Key element of the EntityType are defined.
The property names of the entity are defined using the Property elements. Each of
these properties has specified types such as Integer or String types The Nullable
attribute is used to denote whether or not the property can accept null values. It is a
Boolean attribute and accepts either a true or false value. NavigationProperty is
one that defines the end points of a relationship.

If you look at the preceding code snippet that illustrates the UserRole EntityType,
you will find a navigation property called User.

Extending the existing entity types to create
derived entity types
The EDM allows you to derive (inheritance) a type from a base type. The derived
type extends an existing entity type to add additional information specific to the
type. The EDM also allows you to specify multiple derived types, also called sub
types, from a common base type. Note that entity types may have scalar, complex,
and navigation properties.

Properties are the fundamental building blocks of entity types and complex types
in Entity Framework. A scalar property is one whose actual value is contained in
the entity. As an example, the entity Employee contains scalar properties such as
EmployeeId, FirstName, LastName, and so on. Navigation properties are used to
navigate from one entity to another—this is similar to foreign key relationships in
your database. As an example, the entity Employee can be mapped to the entity
Department. A complex type is a non-scalar property that allows you to group
related properties. As an example, Address is a complex property.

Entities, Relationships, and the Entity Data Model

[62]

Let's start with an example. Both Employee and Customer can derive from the base
type called Person. These sub types then in turn become the base types for other
entities. So, the Employee type can in turn be the base type for Manager, and so on.

Here is how you can extend an existing EntityType to specify your own derived
EntityType:

<EntityType Name="Manager" BaseType="Employee">
 <Property Name="Role" Type="System.String"
Size="max" />
</EntityType>

In the EDM, you can specify inheritance in three ways:

•	 Table-per-Hierarchy Model (TPH)
•	 Table-per-Type Model (TPT)
•	 Table-per-Concrete Class (TPC)

In the TPH, the base types and the derived types are all specified using the same
database table. In the TPT, the base type is in one table while the derived types
are spread across other tables. In the TPC type of inheritance, each derived entity
is mapped to a particular physical database table. In essence, data for the entity is
stored in a separate table.

Consider the following POCO classes:

public abstract class User
{
 public int UserID { get; set; }
 public string UserName { get; set; }
}

public class UserLoginHistory : User
{
 public DateTime LoginTime { get; set; }
}

For TPT type of inheritance, mapping is specified as follows:

modelBuilder.Entity<User>().ToTable("User");
modelBuilder.Entity<UserLoginHistory>().ToTable("UserLoginHistory"
);

Here is how mapping is specified in TPH:

modelBuilder.Entity<User>()
 .Map<UserLoginHistory>(m =>
m.Requires("Type").HasValue("UserLoginHistory"));

Chapter 3

[63]

And, here is how TPC inheritance is mapped in an Entity Framework:

modelBuilder.Entity<UserLoginHistory>().Map(m =>
{
 m.MapInheritedProperties();
 m.ToTable("UserLoginHistory");
});

We will discuss more on how we can implement inheritance in Entity Framework 6
later in this book. You can refer to this link for further studies on this topic: http://
msdn.microsoft.com/en-us/library/vstudio/cc716702(v=vs.100).aspx.

Association sets, associations, containment,
and multiplicity
A relationship represents the logical connection between two or more entities.
The EDM supports both unary and binary relationships. The association type of
relationship models the peer to peer connection between entities. In other words, it
links two or more entities. It has a name and some elements that define the endpoints
of the association.

The figure given next illustrates how a Batch entity and a Student entity are
related—one batch can have one or more students.

Grade

Id (Key)
Name
Duration

Student

Id (Key)
Name
Address
GradeID

Enrolls1 *

An AssociationSet attribute is a set of associations. In essence, an association set
may be defined as a logical container of one or more associations of the same type.
An association defines the relationship between entity types.

While an association and an entity represent the types, an AssociationSet attribute
and an EntitySet attribute represent the storage location of those types. It is to be
noted that Association and AssociationSet attributes act as building blocks to the
pre-runtime library that is created.

http://msdn.microsoft.com/en-us/library/vstudio/cc716702(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/vstudio/cc716702(v=vs.100).aspx

Entities, Relationships, and the Entity Data Model

[64]

Here is how AssociationSet is defined in the EDM:

<AssociationSet Name="FK_Control_ControlType"
Association="SecurityDBModel.FK_Control_ControlType">
 <End Role="ControlType" EntitySet="ControlTypes" />
 <End Role="Control" EntitySet="Controls" />
 </AssociationSet>
 <AssociationSet Name="FK_UserAuthentication_User"
 Association="SecurityDBModel.
 FK_UserAuthentication_User">
 <End Role="User" EntitySet="Users" />
 <End Role="UserAuthentication"
 EntitySet="UserAuthentications" />
 </AssociationSet>
 <AssociationSet Name="FK_UserLoginHistory_User"
 Association="SecurityDBModel.FK_UserLoginHistory_User">
 <End Role="User" EntitySet="Users" />
 <End Role="UserLoginHistory"
 EntitySet="UserLoginHistories" />
 </AssociationSet>
 <AssociationSet Name="FK_UserRole_Role"
 Association="SecurityDBModel.FK_UserRole_Role">
 <End Role="User" EntitySet="Users" />
 <End Role="UserRole" EntitySet="UserRoles" />
 </AssociationSet>
 <AssociationSet
 Name="FK_UserAuthentication_UserAuthenticationType"
 Association="SecurityDBModel.FK_UserAuthentication_User
 AuthenticationType">
 <End Role="UserAuthenticationType"
 EntitySet="UserAuthenticationTypes" />
 <End Role="UserAuthentication"
 EntitySet="UserAuthentications" />
 </AssociationSet>

Containment is a type of bidirectional relationship with the multiplicity as 1 to 0..N.
A containment relation can be used to represent inheritance between entities. Here is
an example of how a containment relationship is defined in the EDM. A parent can
have one or more or zero children:

<Containment Name="Parent_Child">
 <End Type="Parent" role="Parent" />
 <End Type="Child" Multiplicity="*" role="Children" />
</Containment>

Chapter 3

[65]

Multiplicity is used to define the number of entity instances that are related to
the other. Based on multiplicity, relationships between entities can be one of
the following:

•	 One-to-one
•	 One-to-many
•	 Many-to-many

The figure given next illustrates how multiplicity is defined:

Publishes

Publisher

Id (Key)
Name
Address

1

Author

Id (Key)
Name
Address

*

Book

Id (Key)
Title
AuthorID

*Writes

*

The Multiplicity attribute as shown in the preceding code snippet, is used to
define one-to-one, one-to-many, or many-to-many relations among the entities.

What are entity containers?
An entity set is defined as a logical container for entities of a particular type and
its subtypes. All EntitySets and AssociationSets are defined within the context of
the entity container, which is a logical grouping of EntitySets and RelationshipSets.
Here is an example of how an EntityContainer attribute is defined in the EDM:

<EntityContainer Name="SecurityDBModelStoreContainer">
 <EntitySet Name="Control"
 EntityType="SecurityDBModel.Store.Control"
 store:Type="Tables"
 Schema="dbo" />
 <EntitySet Name="ControlType"
 EntityType="SecurityDBModel.Store.ControlType"
 store:Type="Tables" Schema="dbo" />
 <EntitySet Name="Role"
 EntityType="SecurityDBModel.Store.Role"
 store:Type="Tables"
 Schema="dbo" />

Entities, Relationships, and the Entity Data Model

[66]

 <EntitySet Name="User"
 EntityType="SecurityDBModel.Store.User"
 store:Type="Tables"
 Schema="dbo" />
 <EntitySet Name="UserAuthentication"
 EntityType="SecurityDBModel.Store.UserAuthentication"
 store:Type="Tables" Schema="dbo" />
 <EntitySet Name="UserAuthenticationType"
 EntityType="SecurityDBModel.Store.
 UserAuthenticationType"
 store:Type="Tables" Schema="dbo" />
 <EntitySet Name="UserLoginHistory"
 EntityType="SecurityDBModel.Store.UserLoginHistory"
 store:Type="Tables" Schema="dbo" />
 <EntitySet Name="UserRole"
 EntityType="SecurityDBModel.Store.UserRole"
 store:Type="Tables"
 Schema="dbo" />
<AssociationSet Name="FK_Control_ControlType"
Association="SecurityDBModel.Store.FK_Control_ControlType">
 <End Role="ControlType" EntitySet="ControlType" />
 <End Role="Control" EntitySet="Control" />
 </AssociationSet>
 <AssociationSet Name="FK_UserAuthentication_User"
 Association="SecurityDBModel.Store.
 FK_UserAuthentication_User">
 <End Role="User" EntitySet="User" />
 <End Role="UserAuthentication"
 EntitySet="UserAuthentication" />
 </AssociationSet>
 <AssociationSet
 Name="FK_UserAuthentication_UserAuthenticationType"
 Association="SecurityDBModel.Store.
 FK_UserAuthentication_User
 AuthenticationType">
 <End Role="UserAuthenticationType"
 EntitySet="UserAuthenticationType" />
 <End Role="UserAuthentication"
 EntitySet="UserAuthentication" />
 </AssociationSet>
 <AssociationSet Name="FK_UserLoginHistory_User"
 Association="SecurityDBModel.Store.
 FK_UserLoginHistory_User">
 <End Role="User" EntitySet="User" />

Chapter 3

[67]

 <End Role="UserLoginHistory"
 EntitySet="UserLoginHistory" />
 </AssociationSet>
 <AssociationSet Name="FK_UserRole_Role"
 Association="SecurityDBModel.Store.FK_UserRole_Role">
 <End Role="User" EntitySet="User" />
 <End Role="UserRole" EntitySet="UserRole" />
 </AssociationSet>
</EntityContainer>

In the next section, we will revisit the Security EDM and take a look at its
components (the CSDL, MSL, and SSDL sections).

Exploring the Security EDM
The EDM allows the application to have its own view of the application's data.
Consider the following EDM created using the Visual Studio 2015 ADO.NET
EDM Wizard:

The Security Entity Data Model

Entities, Relationships, and the Entity Data Model

[68]

Note that the relationships and the respective fields are displayed along with their
multiplicity. You can also see the scalar and navigation properties. While the Scalar
Properties section lists the attributes or the fields of the entity, the Navigation
Properties are those that denote the associations of a particular entity with other
entities.

As an example, the UserRole entity uses the User and the Role entities to relate its
foreign keys UserID and RoleID respectively. This is also called a join table and
facilitates a many-to-many relationship.

The Mapping Details window
Now we will take a look at the mappings details. That is, how the properties of the
entities are mapped to the underlying database.

To do this, select any entity in the Security DataModel in the design view, right-
click on it, and then click on the Show in Model Browser option, as shown in the
following figure:

Selecting the Show in Model Browser option

Chapter 3

[69]

The following screenshot shows the Model Browser window:

The Model Browser window

This is what the mapping details of the UserAuthentication entity looks like:

The mapping details for the UserAuthentication Entity

Entities, Relationships, and the Entity Data Model

[70]

Following the same steps, you can view the table mapping details for all other
entities in the EDM. As an example, this is what the mapping details for the User
entity looks like:

The mapping details for the User entity

And this is what the mapping details for the UserLoginHistory table looks like:

The mapping details for the UserLoginHistory Entity

The Entity Model browser
The Entity Model browser shows the conceptual and storage models of your EDM in
a diagram view. When you open an EDM in the Model Browser window, you can
see the following:

•	 The Conceptual Model
°° Entity types
°° Associations
°° An Entity container
°° Entity sets
°° Association sets
°° Function imports

Chapter 3

[71]

•	 The Storage Model

°° Tables
°° Views
°° Stored procedures
°° Constraints

This is what the Security DataModel looks like when opened in the Model
Browser window:

The Security EDM in the Model Browser

As you can see from the preceding figure, we have the EDM and its entity types,
the associations, and also the store where we have our database tables, views,
stored procedures, and constraints.

Entities, Relationships, and the Entity Data Model

[72]

The EDM layers
To see the EDM layers, you can right-click on the .edmx file in the solution explorer
and open it in XML editor. Now, when you open our Security DataModel file in its
XML view, you can see three major sections including:

•	 The Conceptual Model (CSDL)
•	 The Storage Model (SSDL)
•	 The Mapping Layer (MSL)

In the sections that follow, we will take a look at each of these sections of our
Security DataModel.

The CSDL schema
The EDM uses the Conceptual Schema Definition Language (CSDL) to define
entities and their relationships. Note that this CSDL schema is generated when the
.edmx file is created. The CSDL Schema defines a namespace and an alias that can
be used for referencing. The CSDL content comprises mainly of:

•	 An entity container
•	 A collection of EntityTypes
•	 A collection of associations

The CSDL schema is organized as a collection of EntitySets, AssociationSets,
EntityTypes, and AssociationTypes as shown here:

<EntityContainer>
 <EntitySet>
 <EntitySet/>

 <EntitySet>
 <EntitySet/>

 <AssociationSet>
 </AssociationSet>

 <AssociationSet>
 </AssociationSet>

</EntityContainer>

<EntityType>
</EntityType>

Chapter 3

[73]

<EntityType>
</EntityType>

<Association>
</Association>
<Association>
</Association>

We have an EntityContainer attribute called SecurityDBModelStoreContainer,
a collection of EntitySets including Control, ControlType, Role, User,
UserAuthentication, UserAuthenticationType, UserLoginHistory, and
UserRole.

Here is how the EntitySets are organized:

 <EntitySet Name="Control"
 EntityType="SecurityDBModel.Store.Control" store:Type="Tables"
 Schema="dbo" />
 <EntitySet Name="ControlType"
 EntityType="SecurityDBModel.Store.ControlType"
 store:Type="Tables"
 Schema="dbo" />
 <EntitySet Name="Role"
 EntityType="SecurityDBModel.Store.Role"
 store:Type="Tables" Schema="dbo" />
 <EntitySet Name="User"
 EntityType="SecurityDBModel.Store.User"
 store:Type="Tables" Schema="dbo" />
 <EntitySet Name="UserAuthentication"
 EntityType="SecurityDBModel.Store.UserAuthentication"
 store:Type="Tables" Schema="dbo" />
 <EntitySet Name="UserAuthenticationType"
 EntityType="SecurityDBModel.Store.
 UserAuthenticationType" store:Type="Tables"
 Schema="dbo" />
 <EntitySet Name="UserLoginHistory"
 EntityType="SecurityDBModel.Store.UserLoginHistory"
 store:Type="Tables" Schema="dbo" />
 <EntitySet Name="UserRole"
 EntityType="SecurityDBModel.Store.UserRole"
 store:Type="Tables" Schema="dbo" />
...
</<EntityContainer>

Entities, Relationships, and the Entity Data Model

[74]

We also have a collection of EntityType attributes with their properties and
navigation properties defined. An entity type is defined as a logical specification for
a data type that includes a key and a named set of properties.

The following code snippet illustrates how the entity types Control and
ControlType are defined:

 <EntityType Name="Control">
 <Key>
 <PropertyRef Name="ControlID" />
 </Key>
 <Property Name="ControlID" Type="int" Nullable="false"
 StoreGeneratedPattern="Identity" />
 <Property Name="ControlTypeID" Type="int"
 Nullable="false" />
 <Property Name="ControlName" Type="nvarchar(max)"
 Nullable="false" />
 <Property Name="ParentControlID" Type="int"
 Nullable="false" />
 </EntityType>
 <EntityType Name="ControlType">
 <Key>
 <PropertyRef Name="ControlTypeID" />
 </Key>
 <Property Name="ControlTypeID" Type="int"
 Nullable="false" StoreGeneratedPattern="Identity" />
 <Property Name="ControlTypeName" Type="nvarchar(max)"
 Nullable="false" />
 </EntityType>

The following code snippet illustrates how the entity types Role and User
are defined:

 <EntityType Name="Role">
 <Key>
 <PropertyRef Name="RoleID" />
 </Key>
 <Property Name="RoleID" Type="int" Nullable="false"
 StoreGeneratedPattern="Identity" />
 <Property Name="RoleDescription" Type="nvarchar(max)"
 Nullable="false" />
 </EntityType>
 <EntityType Name="User">
 <Key>
 <PropertyRef Name="UserID" />

Chapter 3

[75]

 </Key>
 <Property Name="UserID" Type="int" Nullable="false"
 StoreGeneratedPattern="Identity" />
 <Property Name="IsAdmin" Type="bit" />
 <Property Name="IsActive" Type="bit" />
 <Property Name="IsOnline" Type="bit" />
 </EntityType>
 <EntityType Name="UserAuthentication">
 <Key>
 <PropertyRef Name="UserAuthenticationID" />
 </Key>
 <Property Name="UserAuthenticationID" Type="int"
 Nullable="false" StoreGeneratedPattern="Identity" />
 <Property Name="UserAuthenticationTypeID" Type="int"
 Nullable="false" />
 <Property Name="UserID" Type="int" Nullable="false" />
 <Property Name="UserName" Type="nvarchar(max)"
 Nullable="false" />
 <Property Name="Password" Type="nvarchar(max)"
 Nullable="false" />
 <Property Name="UserEmail" Type="nvarchar(max)" />
 </EntityType>

The following code snippet shows how the other entity types of the Security Entity
DataModel is defined:

 <EntityType Name="UserAuthenticationType">
 <Key>
 <PropertyRef Name="UserAuthenticationTypeID" />
 </Key>
 <Property Name="UserAuthenticationTypeID" Type="int"
 Nullable="false" StoreGeneratedPattern="Identity" />
 <Property Name="UserAuthenticationTypeDescription"
 Type="nvarchar(max)" Nullable="false" />
 </EntityType>
 <EntityType Name="UserLoginHistory">
 <Key>
 <PropertyRef Name="UserLoginID" />
 </Key>
 <Property Name="UserLoginID" Type="int" Nullable="false"
 StoreGeneratedPattern="Identity" />
 <Property Name="UserID" Type="int" Nullable="false" />
 <Property Name="UserLoginDate" Type="datetime"
 Nullable="false" />

Entities, Relationships, and the Entity Data Model

[76]

 </EntityType>
 <EntityType Name="UserRole">
 <Key>
 <PropertyRef Name="UserRoleID" />
 </Key>
 <Property Name="UserRoleID" Type="int" Nullable="false"
 StoreGeneratedPattern="Identity" />
 <Property Name="UserID" Type="int" Nullable="false" />
 <Property Name="RoleID" Type="int" Nullable="false" />
 </EntityType>

Next we have several associations as shown here:

 <Association Name="FK_Control_ControlType">
 <End Role="ControlType"
 Type="SecurityDBModel.Store.ControlType"
 Multiplicity="1" />
 <End Role="Control" Type="SecurityDBModel.Store.Control"
 Multiplicity="*" />
 <ReferentialConstraint>
 <Principal Role="ControlType">
 <PropertyRef Name="ControlTypeID" />
 </Principal>
 <Dependent Role="Control">
 <PropertyRef Name="ControlTypeID" />
 </Dependent>
 </ReferentialConstraint>
 </Association>
 <Association Name="FK_UserAuthentication_User">
 <End Role="User" Type="SecurityDBModel.Store.User"
 Multiplicity="1" />
 <End Role="UserAuthentication"
 Type="SecurityDBModel.Store.UserAuthentication"
 Multiplicity="*"
 />
 <ReferentialConstraint>
 <Principal Role="User">
 <PropertyRef Name="UserID" />
 </Principal>
 <Dependent Role="UserAuthentication">
 <PropertyRef Name="UserID" />
 </Dependent>
 </ReferentialConstraint>
 </Association>

Chapter 3

[77]

 <Association
 Name="FK_UserAuthentication_UserAuthenticationType">
 <End Role="UserAuthenticationType"
 Type="SecurityDBModel.Store.UserAuthenticationType"
 Multiplicity="1" />
 <End Role="UserAuthentication"
 Type="SecurityDBModel.Store.UserAuthentication"
 Multiplicity="*"
 />
 <ReferentialConstraint>
 <Principal Role="UserAuthenticationType">
 <PropertyRef Name="UserAuthenticationTypeID" />
 </Principal>
 <Dependent Role="UserAuthentication">
 <PropertyRef Name="UserAuthenticationTypeID" />
 </Dependent>
 </ReferentialConstraint>
 </Association>
 <Association Name="FK_UserLoginHistory_User">
 <End Role="User" Type="SecurityDBModel.Store.User"
 Multiplicity="1" />
 <End Role="UserLoginHistory"
 Type="SecurityDBModel.Store.UserLoginHistory"
 Multiplicity="*" />
 <ReferentialConstraint>
 <Principal Role="User">
 <PropertyRef Name="UserID" />
 </Principal>
 <Dependent Role="UserLoginHistory">
 <PropertyRef Name="UserID" />
 </Dependent>
 </ReferentialConstraint>
 </Association>
 <Association Name="FK_UserRole_Role">
 <End Role="User" Type="SecurityDBModel.Store.User"
 Multiplicity="1" />
 <End Role="UserRole"
 Type="SecurityDBModel.Store.UserRole" Multiplicity="*"
 />
 <ReferentialConstraint>
 <Principal Role="User">
 <PropertyRef Name="UserID" />
 </Principal>

Entities, Relationships, and the Entity Data Model

[78]

 <Dependent Role="UserRole">
 <PropertyRef Name="UserID" />
 </Dependent>
 </ReferentialConstraint>
 </Association>

You also have the AssociationSet elements that comprise a set of association
definitions with each association depicting a foreign key relation. Note that the End
Role attribute of the AssociationSet element defines the end point of the foreign
key relation.

Here is the how the AssociationSet attributes are defined in our Security
DataModel:

<AssociationSet Name="FK_Control_ControlType"
Association="SecurityDBModel.Store.FK_Control_ControlType">
 <End Role="ControlType" EntitySet="ControlType" />
 <End Role="Control" EntitySet="Control" />
 </AssociationSet>
 <AssociationSet Name="FK_UserAuthentication_User"
 Association="SecurityDBModel.Store.
 FK_UserAuthentication_User">
 <End Role="User" EntitySet="User" />
 <End Role="UserAuthentication"
 EntitySet="UserAuthentication" />
 </AssociationSet>
 <AssociationSet
 Name="FK_UserAuthentication_UserAuthenticationType"
 Association="SecurityDBModel.Store.
 FK_UserAuthentication_User
 AuthenticationType">
 <End Role="UserAuthenticationType"
 EntitySet="UserAuthenticationType" />
 <End Role="UserAuthentication"
 EntitySet="UserAuthentication" />
 </AssociationSet>
 <AssociationSet Name="FK_UserLoginHistory_User"
 Association="SecurityDBModel.Store.
 FK_UserLoginHistory_User">
 <End Role="User" EntitySet="User" />
 <End Role="UserLoginHistory"
 EntitySet="UserLoginHistory" />
 </AssociationSet>
 <AssociationSet Name="FK_UserRole_Role"

Chapter 3

[79]

 Association="SecurityDBModel.Store.FK_UserRole_Role">
 <End Role="User" EntitySet="User" />
 <End Role="UserRole" EntitySet="UserRole" />
</AssociationSet>

As you can see from the preceding code snippet, the AssociationSet attribute
called FK_UserRole_Role defines a foreign key relation between the User and
UserRole entities. In the next section, we will take a look at the SSDL section in the
Security DataModel.

The SSDL schema
The schema definition for the Store Schema Definition Language or SSDL
(automatically generated by Visual Studio when the .edmx file is created) section is
similar to its CSDL counterpart. In addition to what we have just seen in the CSDL
schema, we have field types, field lengths, and identity properties that specify
whether a particular column in the database table is an identity column.

The SSDL schema is also organized much the same as CSDL with the relational
schema information of the database in use. Here is how the entities are represented
in SSDL:

<EntityType Name="Control">
 <Key>
 <PropertyRef Name="ControlID" />
 </Key>
 <Property Name="ControlID" Type="int" Nullable="false"
 StoreGeneratedPattern="Identity" />
 <Property Name="ControlTypeID" Type="int"
 Nullable="false" />
 <Property Name="ControlName" Type="nvarchar(max)"
 Nullable="false" />
 <Property Name="ParentControlID" Type="int"
 Nullable="false" />
 </EntityType>
 <EntityType Name="ControlType">
 <Key>
 <PropertyRef Name="ControlTypeID" />
 </Key>
 <Property Name="ControlTypeID" Type="int"
 Nullable="false" StoreGeneratedPattern="Identity" />
 <Property Name="ControlTypeName" Type="nvarchar(max)"
 Nullable="false" />
 </EntityType>

Entities, Relationships, and the Entity Data Model

[80]

 <EntityType Name="Role">
 <Key>
 <PropertyRef Name="RoleID" />
 </Key>
 <Property Name="RoleID" Type="int" Nullable="false"
 StoreGeneratedPattern="Identity" />
 <Property Name="RoleDescription" Type="nvarchar(max)"
 Nullable="false" />
 </EntityType>
 <EntityType Name="User">
 <Key>
 <PropertyRef Name="UserID" />
 </Key>
 <Property Name="UserID" Type="int" Nullable="false"
 StoreGeneratedPattern="Identity" />
 <Property Name="IsAdmin" Type="bit" />
 <Property Name="IsActive" Type="bit" />
 <Property Name="IsOnline" Type="bit" />
 </EntityType>
 <EntityType Name="UserAuthentication">
 <Key>
 <PropertyRef Name="UserAuthenticationID" />
 </Key>
 <Property Name="UserAuthenticationID" Type="int"
 Nullable="false" StoreGeneratedPattern="Identity" />
 <Property Name="UserAuthenticationTypeID" Type="int"
 Nullable="false" />
 <Property Name="UserID" Type="int" Nullable="false" />
 <Property Name="UserName" Type="nvarchar(max)"
 Nullable="false" />
 <Property Name="Password" Type="nvarchar(max)"
 Nullable="false" />
 <Property Name="UserEmail" Type="nvarchar(max)" />
 </EntityType>
 <EntityType Name="UserAuthenticationType">
 <Key>
 <PropertyRef Name="UserAuthenticationTypeID" />
 </Key>
 <Property Name="UserAuthenticationTypeID" Type="int"
 Nullable="false" StoreGeneratedPattern="Identity" />
 <Property Name="UserAuthenticationTypeDescription"
 Type="nvarchar(max)" Nullable="false" />
 </EntityType>

Chapter 3

[81]

 <EntityType Name="UserLoginHistory">
 <Key>
 <PropertyRef Name="UserLoginID" />
 </Key>
 <Property Name="UserLoginID" Type="int" Nullable="false"
 StoreGeneratedPattern="Identity" />
 <Property Name="UserID" Type="int" Nullable="false" />
 <Property Name="UserLoginDate" Type="datetime"
 Nullable="false" />
 </EntityType>
 <EntityType Name="UserRole">
 <Key>
 <PropertyRef Name="UserRoleID" />
 </Key>
 <Property Name="UserRoleID" Type="int" Nullable="false"
 StoreGeneratedPattern="Identity" />
 <Property Name="UserID" Type="int" Nullable="false" />
 <Property Name="RoleID" Type="int" Nullable="false" />
</EntityType>

The MSL schema
We will now take a look at the Mapping Specification Language or MSL schema
(automatically generated by Visual Studio when the .edmx file is produced) that
defines the C-S mapping, which maps the Conceptual Model to the Relational Store.
Here is the MSL schema for our Security DataModel:

<EntityContainerMapping
StorageEntityContainer="SecurityDBModelStoreContainer"
CdmEntityContainer="SecurityDBEntities">
 <EntitySetMapping Name="Controls">
 <EntityTypeMapping TypeName="SecurityDBModel.Control">
 <MappingFragment StoreEntitySet="Control">
 <ScalarProperty Name="ControlID"
 ColumnName="ControlID" />
 <ScalarProperty Name="ControlTypeID"
 ColumnName="ControlTypeID" />
 <ScalarProperty Name="ControlName"
 ColumnName="ControlName" />
 <ScalarProperty Name="ParentControlID"
 ColumnName="ParentControlID" />
 </MappingFragment>
 </EntityTypeMapping>
 </EntitySetMapping>

Entities, Relationships, and the Entity Data Model

[82]

 <EntitySetMapping Name="ControlTypes">
 <EntityTypeMapping
 TypeName="SecurityDBModel.ControlType">
 <MappingFragment StoreEntitySet="ControlType">
 <ScalarProperty Name="ControlTypeID"
 ColumnName="ControlTypeID" />
 <ScalarProperty Name="ControlTypeName"
 ColumnName="ControlTypeName" />
 </MappingFragment>
 </EntityTypeMapping>
 </EntitySetMapping>
 <EntitySetMapping Name="Roles">
 <EntityTypeMapping TypeName="SecurityDBModel.Role">
 <MappingFragment StoreEntitySet="Role">
 <ScalarProperty Name="RoleID" ColumnName="RoleID"
 />
 <ScalarProperty Name="RoleDescription"
 ColumnName="RoleDescription" />
 </MappingFragment>
 </EntityTypeMapping>
 </EntitySetMapping>
 <EntitySetMapping Name="Users">
 <EntityTypeMapping TypeName="SecurityDBModel.User">
 <MappingFragment StoreEntitySet="User">
 <ScalarProperty Name="UserID" ColumnName="UserID"
 />
 <ScalarProperty Name="IsAdmin"
 ColumnName="IsAdmin" />
 <ScalarProperty Name="IsActive"
 ColumnName="IsActive" />
 <ScalarProperty Name="IsOnline"
 ColumnName="IsOnline" />
 </MappingFragment>
 </EntityTypeMapping>
 </EntitySetMapping>
 <EntitySetMapping Name="UserAuthentications">
 <EntityTypeMapping
 TypeName="SecurityDBModel.UserAuthentication">
 <MappingFragment
 StoreEntitySet="UserAuthentication">
 <ScalarProperty Name="UserAuthenticationID"
 ColumnName="UserAuthenticationID" />
 <ScalarProperty Name="UserAuthenticationTypeID"
 ColumnName="UserAuthenticationTypeID" />

Chapter 3

[83]

 <ScalarProperty Name="UserID" ColumnName="UserID"
 />
 <ScalarProperty Name="UserName"
 ColumnName="UserName" />
 <ScalarProperty Name="Password"
 ColumnName="Password" />
 <ScalarProperty Name="UserEmail"
 ColumnName="UserEmail" />
 </MappingFragment>
 </EntityTypeMapping>
 </EntitySetMapping>
 <EntitySetMapping Name="UserAuthenticationTypes">
 <EntityTypeMapping
 TypeName="SecurityDBModel.UserAuthenticationType">
 <MappingFragment
 StoreEntitySet="UserAuthenticationType">
 <ScalarProperty Name="UserAuthenticationTypeID"
 ColumnName="UserAuthenticationTypeID" />
 <ScalarProperty
 Name="UserAuthenticationTypeDescription"
 ColumnName="UserAuthenticationTypeDescription" />
 </MappingFragment>
 </EntityTypeMapping>
 </EntitySetMapping>
 <EntitySetMapping Name="UserLoginHistories">
 <EntityTypeMapping
 TypeName="SecurityDBModel.UserLoginHistory">
 <MappingFragment StoreEntitySet="UserLoginHistory">
 <ScalarProperty Name="UserLoginID"
 ColumnName="UserLoginID" />
 <ScalarProperty Name="UserID" ColumnName="UserID"
 />
 <ScalarProperty Name="UserLoginDate"
 ColumnName="UserLoginDate" />
 </MappingFragment>
 </EntityTypeMapping>
 </EntitySetMapping>
 <EntitySetMapping Name="UserRoles">
 <EntityTypeMapping
 TypeName="SecurityDBModel.UserRole">
 <MappingFragment StoreEntitySet="UserRole">
 <ScalarProperty Name="UserRoleID"
 ColumnName="UserRoleID" />
 <ScalarProperty Name="UserID" ColumnName="UserID"

Entities, Relationships, and the Entity Data Model

[84]

 />
 <ScalarProperty Name="RoleID" ColumnName="RoleID"
 />
 </MappingFragment>
 </EntityTypeMapping>
 </EntitySetMapping>
 </EntityContainerMapping>
 </Mapping>
</edmx:Mappings>

As you can see in the MSL schema just mentioned, the EntityContainerMapping
attribute is used to indicate that the StorageEntityContainer attribute is mapped
to the conceptual model container.

But how is this mapping achieved? Entity Framework does this by mapping
each EntitySet and AssociationSet attributes to the corresponding elements
in the data store. As an example, it uses the StoreEntitySet attribute to map a
particular EntityType to the corresponding database table. There are also many
ScalarProperty attributes that define how a particular property is mapped to its
corresponding column name in the database table.

Here is how the mapping information for the UserRoles entity set is represented:

<EntitySetMapping Name="UserRoles">
 <EntityTypeMapping
 TypeName="SecurityDBModel.UserRole">
 <MappingFragment StoreEntitySet="UserRole">
 <ScalarProperty Name="UserRoleID"
 ColumnName="UserRoleID" />
 <ScalarProperty Name="UserID" ColumnName="UserID"
 />
 <ScalarProperty Name="RoleID" ColumnName="RoleID"
 />
 </MappingFragment>
 </EntityTypeMapping>
</EntitySetMapping>

The EntityTypeMapping attribute in the preceding code snippet is used to specify
the type of the entity being represented. The MSL schema maps the CSDL and SSDL
sections of the EDM.

Chapter 3

[85]

Entity classes
These are .NET classes that are automatically generated from the CSDL definition.
You can create POCO classes from .edmx files using Entity Framework DbContext
Fluent Generator. When you do this, T4 templates will be automatically added to
your project. You can download the DbContext Fluent Generator from https://
visualstudiogallery.msdn.microsoft.com/5d663b99-ed3b-481d-b7bc-
b947d2457e3c.

These are similar to business entities and can be used to populate data and pass
instances of these classes across the layers of the application. Note that whenever
the CSDL definition changes, these classes are automatically updated to reflect
the changes. Also, these classes are partial classes and hence you can extend them
to create your own custom classes too. These are also partial because you want
to keep your extensions in a separate file so they are not overridden if the class is
regenerated—this facilitates extensibility and also convenience.

The following code snippet shows what the Control and ControlType entity classes
look like:

public partial class Control
 {
 public int ControlID { get; set; }
 public int ControlTypeID { get; set; }
 public string ControlName { get; set; }
 public int ParentControlID { get; set; }

 public virtual ControlType ControlType { get; set; }
 }

public partial class ControlType
 {
 public ControlType()
 {
 this.Controls = new HashSet<Control>();
 }

 public int ControlTypeID { get; set; }
 public string ControlTypeName { get; set; }

 public virtual ICollection<Control> Controls { get; set; }
 }

https://visualstudiogallery.msdn.microsoft.com/5d663b99-ed3b-481d-b7bc-b947d2457e3c
https://visualstudiogallery.msdn.microsoft.com/5d663b99-ed3b-481d-b7bc-b947d2457e3c
https://visualstudiogallery.msdn.microsoft.com/5d663b99-ed3b-481d-b7bc-b947d2457e3c

Entities, Relationships, and the Entity Data Model

[86]

Note the use of the virtual keyword in the ControlType class. This is used to
promote lazy loading. The virtual keyword is used to facilitate lazy loading—if the
virtual keyword is not there, the property would be eager loaded. The usage of the
virtual keyword also helps in efficient change tracking. The Role and User entity
classes are given as follows:

public partial class Role
 {
 public int RoleID { get; set; }
 public string RoleDescription { get; set; }
 }

public partial class User
 {
 public User()
 {
 this.UserAuthentications = new
 HashSet<UserAuthentication>();
 this.UserLoginHistories = new
 HashSet<UserLoginHistory>();
 this.UserRoles = new HashSet<UserRole>();
 }

 public int UserID { get; set; }
 public Nullable<bool> IsAdmin { get; set; }
 public Nullable<bool> IsActive { get; set; }
 public Nullable<bool> IsOnline { get; set; }

 public virtual ICollection<UserAuthentication>
 UserAuthentications { get; set; }
 public virtual ICollection<UserLoginHistory>
 UserLoginHistories { get; set; }
 public virtual ICollection<UserRole> UserRoles { get; set;
 }
 }

Note the use of HashSet in the User class. HashSet is used to ensure that the collection
contains one instance (no duplicates) of an instance. The UserAuthentication and
UserAuthenticationType entity classes are shown as follows:

public partial class UserAuthentication
 {
 public int UserAuthenticationID { get; set; }
 public int UserAuthenticationTypeID { get; set; }
 public int UserID { get; set; }
 public string UserName { get; set; }

Chapter 3

[87]

 public string Password { get; set; }
 public string UserEmail { get; set; }

 public virtual User User { get; set; }
 public virtual UserAuthenticationType
 UserAuthenticationType { get; set; }
 }

public partial class UserAuthenticationType
 {
 public UserAuthenticationType()
 {
 this.UserAuthentications = new
 HashSet<UserAuthentication>();
 }

 public int UserAuthenticationTypeID { get; set; }
 public string UserAuthenticationTypeDescription { get;
 set; }

 public virtual ICollection<UserAuthentication>
 UserAuthentications { get; set; }
 }

Here is the code of the UserLoginHistory entity class:

public partial class UserLoginHistory
 {
 public int UserLoginID { get; set; }
 public int UserID { get; set; }
 public System.DateTime UserLoginDate { get; set; }

 public virtual User User { get; set; }
 }

And, the following code snippet illustrates the UserRole entity class:

public partial class UserRole
 {
 public int UserRoleID { get; set; }
 public int UserID { get; set; }
 public int RoleID { get; set; }

 public virtual User User { get; set; }
 }

Entities, Relationships, and the Entity Data Model

[88]

Summary
The EDM comprises a storage schema, a conceptual schema, and a mapping schema
together with the entity classes. In this chapter, we took a detailed look at the EDM
and how each of its sections relate to each other. We discussed each of the sections
of our Security DataModel and how they are related.

In the next chapter, we will explore the use of stored procedures with the EDM.

[89]

Working with
Stored Procedures in
the Entity Data Model

The Entity Framework is an extended Object Relational Mapping (ORM) technology
from Microsoft that abstracts the object model of an application from its relational or
logical model. The newer versions of this framework provide you with many exciting
features—model-first development being one of these things. In this chapter, we will
explore how we can work with stored procedures in Entity Framework 6.

We will discuss the following points:

•	 Creating a database using model-first development
•	 Creating stored procedures for the database
•	 Mapping stored procedures to functions in the EDM
•	 Using the stored procedures in the Object Layer
•	 Mapping stored procedures that return custom entity types
•	 Adding stored procedures to the EDM
•	 Mapping stored procedures to functions in the EDM
•	 Mapping stored procedures that return custom entity types

Working with Stored Procedures in the Entity Data Model

[90]

Note that as of this writing, support for stored procedures is not yet
included in Entity Framework 7. However, you can do it using plain
ADO.NET statements, as shown in the code snippet that follows:

var connection =
(SqlConnection)context.Database.AsSqlServer().
Connection .DbConnection;
var command = connection.CreateCommand();
command.CommandType = CommandType.StoredProcedure;
command.CommandText = "DeleteEmployee";
command.Parameters.AddWithValue("@EmployeeId", 1);
command.ExecuteNonQuery();

Creating a database using model-first
development
One of the most interesting new features and enhancements introduced in Entity
Framework 6 is its ability to generate a database from an existing object model.
This approach provides you with better control over your design and promotes
domain-driven design (DDD). In this approach, you can design your domain model
based on the business requirements first and then generate the database from it.

Before we explore this further, let's take a quick tour of the modeling approaches
that are supported. The domain modeling approaches in Entity Framework include
the following:

•	 Code-first: In this approach, the domain model is first defined using the POCO
classes and then the database is created from these classes. This approach is
popular and provides much more control over your code—you just need to
define the database mappings and leave the creating of the database entirely
to Entity Framework. Note that as your code drives the database, manual
changes to the database are not preferred in this approach.

•	 Model-first: In the model-first approach you create your entities, relationships,
and the inheritance hierarchies directly on the design surface of the EDM
Designer in Visual Studio, and then generate the database from the model
designed. If you need additional features, you can use partial classes. In
essence, in this approach, the model drives and defines the database. This
is also known as a model-driven approach. This approach is good for small
projects, but with complex databases and large projects, this is not a preferred
approach as you don't have much control over the database and making
manual changes to the database schema is also not preferred.

Chapter 4

[91]

•	 Database-first: In this approach, the database is first designed and then the
model is generated from the database. In this approach, you can make manual
changes to the database and then regenerate the model from the database.

Microsoft has planned to retire the Visual Design tool for the Entity Framework from
version 7 of the framework. As a result, you will only have the code-first approach to
build your entity classes. This is also known as the code-first only approach.

In this section, we will explore how we can make use of Entity Framework to create a
database using Visual Studio 2015 and Entity Framework.

Follow these steps:

1.	 Open Visual Studio 2015, create a blank new ASP.NET project, and save it
with a name.

2.	 Right-click on the project created in the Solution Explorer window and select
Add | New Item..., as shown in the following screenshot:

Working with Stored Procedures in the Entity Data Model

[92]

3.	 Select ADO.NET Entity Data Model from the list of the templates displayed
and provide the name, Payroll. Then, click on Add:

4.	 On the Entity Data Model Wizard screen that is displayed next, select Empty
model since we will be generating our database from the model:

Chapter 4

[93]

5.	 Click on Finish.
The Payroll.edmx file will be created and added to the project. The EDM we
just created looks like the following screenshot:

The next step is to create entities and associations. To do this, follow these steps:

1.	 Right-click on the Entity Data Model Designer and navigate to Add New |
Entity... from the pop-up menu displayed:

Working with Stored Procedures in the Entity Data Model

[94]

2.	 Provide the name of the entity as Employee and specify the key property
name as EmployeeID, as shown here:

Chapter 4

[95]

The next step is to create the properties for the entity we just created.

1.	 To create a scalar property for the Employee entity, right-click on the
entity in the Entity Data Model Designer and navigate to Add New |
Scalar Property:

2.	 Specify the name, length, and type of the scalar property.
3.	 Repeat the same for all the properties you need for the Employee entity.
4.	 Now, create the Department entity and its properties by using the same

procedure you followed for the Employee entity.

Working with Stored Procedures in the Entity Data Model

[96]

So, we have two entities, namely Employee and Department, created. The next step
is to associate these entities.

1.	 To create an association between the entities, select the Department entity in
the designer and navigate to Add | Association.

2.	 The Add Association dialog appears as shown in the following screenshot:

Chapter 4

[97]

3.	 You can specify the variations in the association by using the multiplicity
drop-down controls, as shown in the preceding screenshot. In this example,
we will go ahead with the default association. So, click on OK to save the
association. The following screenshot illustrates what the EDM now looks
like in the Model Browser window:

Now that the entity, its properties, and associations have been created, we can go
ahead and generate our database from the model we created:

1.	 To do this, right-click on the designer and select Generate Database from
Model..., as shown in the screenshot that follows:

Working with Stored Procedures in the Entity Data Model

[98]

2.	 In the Generate Database Wizard window that appears next, select New
Connection... and specify the connection properties:

Chapter 4

[99]

3.	 Specify the database name as Payroll and click on OK:

Working with Stored Procedures in the Entity Data Model

[100]

4.	 You will be prompted to create a new database as none exist with this name:

Chapter 4

[101]

5.	 Click on Yes.
6.	 You'll be returned to the Generate Database Wizard dialog again.

Now, select the checkbox and the second radio button and click on
Next, as shown in the screenshot that follows:

Working with Stored Procedures in the Entity Data Model

[102]

7.	 The Generate Database Wizard dialog will now generate the necessary DDL
statements to create the database.

8.	 Click on Finish.

A new file called Payroll.edmx.sql will be created with the necessary DDL
statements to create the database from the model we created earlier in this chapter.

Here's how the content of this file will look:

SET QUOTED_IDENTIFIER OFF;
GO
USE [Payroll];
GO

Chapter 4

[103]

IF SCHEMA_ID(N'dbo') IS NULL EXECUTE(N'CREATE SCHEMA [dbo]');
GO

-- --
-- Dropping existing FOREIGN KEY constraints
-- --

-- --
-- Dropping existing tables
-- --

-- --
-- Creating all tables
-- --

-- Creating table 'Employees'
CREATE TABLE [dbo].[Employees] (
 [EmployeeID] int IDENTITY(1,1) NOT NULL,
 [FirstName] nvarchar(50) NOT NULL,
 [LastName] nvarchar(50) NOT NULL,
 [Address] nvarchar(200) NOT NULL,
 [Phone] nvarchar(20) NOT NULL,
 [JoiningDate] datetime NOT NULL,
 [DepartmentDepartmentID] int NOT NULL,
 [CreatedDate_DateCreated] datetime NOT NULL
);
GO

-- Creating table 'Departments'
CREATE TABLE [dbo].[Departments] (
 [DepartmentID] int IDENTITY(1,1) NOT NULL,
 [DepartmentName] nvarchar(100) NOT NULL,
 [CreatedDate_DateCreated] datetime NOT NULL
);
GO

-- --
-- Creating all PRIMARY KEY constraints
-- --

-- Creating primary key on [EmployeeID] in table 'Employees'
ALTER TABLE [dbo].[Employees]

Working with Stored Procedures in the Entity Data Model

[104]

ADD CONSTRAINT [PK_Employees]
 PRIMARY KEY CLUSTERED ([EmployeeID] ASC);
GO

-- Creating primary key on [DepartmentID] in table 'Departments'
ALTER TABLE [dbo].[Departments]
ADD CONSTRAINT [PK_Departments]
 PRIMARY KEY CLUSTERED ([DepartmentID] ASC);
GO

-- --
-- Creating all FOREIGN KEY constraints
-- --

-- Creating foreign key on [DepartmentDepartmentID] in table
'Employees'
ALTER TABLE [dbo].[Employees]
ADD CONSTRAINT [FK_DepartmentEmployee]
 FOREIGN KEY ([DepartmentDepartmentID])
 REFERENCES [dbo].[Departments]
 ([DepartmentID])
 ON DELETE NO ACTION ON UPDATE NO ACTION;

-- Creating non-clustered index for FOREIGN KEY
'FK_DepartmentEmployee'
CREATE INDEX [IX_FK_DepartmentEmployee]
ON [dbo].[Employees]
 ([DepartmentDepartmentID]);
GO

-- --
-- Script has ended
-- --

Note that the database tables haven't been created yet—you will need to actually
execute this script to have the necessary database tables created in the database.
To do this, follow these steps:

1.	 Open the Payroll.edmx.sql file.
2.	 Right-click on it and then select Execute SQL from the pop-up menu.
3.	 Specify the connection properties for the database server and click on Connect.
4.	 If the connection is successful, the database and the tables will be created.

Chapter 4

[105]

Creating stored procedures
A stored procedure is a group of one or more Transact-SQL statements stored in the
database data dictionary and compiled as a single execution plan. We will create
stored procedures that we will use to select, insert, update, and delete data from
the Employee and Department tables we just created. Here is a list of the stored
procedures that we will create for our Payroll database:

•	 Employee_Select

•	 Employee_Insert

•	 Employee_Update

•	 Employee_Delete

•	 Department_Select

•	 Department_Insert

•	 Department_Update

•	 Department_Delete

The following code shows the complete scripts for each of the stored procedures for
the Employee and Department tables:

Create Procedure Employee_Select
as
Select EmployeeID, FirstName, LastName, Address,Phone,
DepartmentDepartmentID, JoiningDate,CreatedDate_DateCreated
from Employees
Go

Create Procedure Employee_Insert
@FirstName varchar(50), @LastName varchar(50), @Address
varchar(200),
@Phone varchar(20), @DepartmentID int, @JoiningDate datetime,
@DateCreated datetime
as
Insert into Employees(FirstName, LastName, Address,Phone,
DepartmentDepartmentID, JoiningDate,CreatedDate_DateCreated)
values (@FirstName, @LastName, @Address, @Phone,
@DepartmentID,@JoiningDate, @DateCreated)
Go

Create Procedure Employee_Update
@EmployeeID int, @FirstName varchar(50), @LastName varchar(50),

Working with Stored Procedures in the Entity Data Model

[106]

@Address varchar(200), @Phone varchar(20)
as
Update Employees Set @FirstName = @FirstName, LastName =
LastName, Address = @Address, Phone = @Phone Where EmployeeID =
@EmployeeID
Go

Create Procedure Employee_Delete
@EmployeeID int
as
Delete from Employees where EmployeeID = @EmployeeID
Go

Create Procedure Department_Select
as
Select DepartmentID, DepartmentName, CreatedDate_DateCreated
from Departments
Go

Create Procedure Department_Insert
@DepartmentName varchar(100), @CreatedDate datetime
as
Insert into Departments (DepartmentName, CreatedDate_DateCreated)
values (@DepartmentName, @CreatedDate)
Go

Create Procedure Department_Update
@DepartmentID int,@DepartmentName varchar(100)
as
Update Departments Set DepartmentName = @DepartmentName where
DepartmentID = @DepartmentID
Go

Create Procedure Department_Delete
@DepartmentID int
as
Delete from Departments where DepartmentID = @DepartmentID
Go

Once you are done creating the stored procedures, select the EDM in the designer,
right-click on it, and select Update Model from Database... to update the EDM with
the changes (new stored procedures created) we just made.

Chapter 4

[107]

In the Update Wizard that shows up next, select the database objects (this time we
will select the stored procedures we created) you need, and then click on Finish.

The following screenshot shows how the Payroll EDM now looks in the Model
Browser window:

Note that the stored procedures have been listed.

Working with Stored Procedures in the Entity Data Model

[108]

Mapping stored procedures to functions
in the EDM
Stored procedures are represented as functions in the EDM. To use these functions,
they should be mapped to a corresponding insert, update, or delete operation on the
entity. To do this, you need to first create a function import and then use the designer
to create its mapping. In this section, you will learn how to create these function
imports for your EDM.

To begin, let's refer to the EDM we created earlier in this chapter. To create function
imports, follow these steps:

1.	 Switch to the Model Browser of the Payroll Entity Data Model.
2.	 Expand the Entity Container and right-click on Function Imports.
3.	 When you select Create Function Import, the New Function Import dialog

appears and allows you to select the stored procedure you want from the list
of available stored procedures.

4.	 Now, map the Employee_Insert stored procedure to a corresponding
function import by selecting the stored procedure name, the function
import name, and the return type. Note that you can specify any name
as the function import name.

Chapter 4

[109]

5.	 Repeat the aforementioned steps to map the remaining procedures to their
corresponding functions.

Working with Stored Procedures in the Entity Data Model

[110]

You can use the same procedure to map your select procedures, that is, procedures
that return an entity or a collection of entities. The return type of such function
imports should be the name of the entity in the EDM that it returns. As an example,
here is how you can map the Department_Select stored procedure using the New
Function Import dialog window:

Chapter 4

[111]

Once you are done mapping the procedures you need, you can see the complete list
in the Model Browser dialog:

Now that the function imports have been created, you need to map them to the
corresponding insert, update, and delete operations on the entity using the designer.

Mapping the create, update, and delete
functions to entities in the EDM
In this section, we will explore how to map the functions we just created to the
corresponding entities of our EDM. Note that we only need to map the CUD functions.

Now, follow these steps:

1.	 Select the Employee entity in the designer, right-click on it, and select
Show in Mapping Details.

2.	 Click on Map Entities to Functions to map the CUD functions of the
Employee entity.

Working with Stored Procedures in the Entity Data Model

[112]

3.	 The Mapping Details-Employee window for the Employee entity appears
where you can specify the insert, update, and delete functions for the
Employee entity.

4.	 Click on the Select Insert Function drop-down list to select the Employee_
Insert function as the insert function from the list of available functions
for the Employee entity.

5.	 The Mapping Details-Employee window now displays the parameters
and the corresponding properties to which they are bound:

As you can see from the preceding screenshot, the field parameters and the field
names of the Employee entity are mapped. You will need to manually map the
DepartmentID field to the corresponding parameter as it is an association mapping.

Repeat the same steps for specifying the mapping details for the Department entity.
Once the mapping details for the Department entity have all been specified, here's
how it would look in the Mapping Details-Department window:

Chapter 4

[113]

Mapping stored procedures with no entity set
In the earlier version of Entity Framework, the ADO.NET Entity Data Model code
generator doesn't include code for functions that return scalar types. That is, the
import functions that don't have any EntitySets. In essence, if your stored procedure
returns a single value while not returning an entity or a collection of entities, you
will not find code for the function in the generated code. The stored procedures that
we used to map to the corresponding function imports don't have a return type.

You can easily map stored procedures that return an existing entity type or a
collection of entity types. To map a stored procedure that doesn't return an entity
type and enable the code generator to generate code for you, just create a dummy
table in your database and an entity type from that table in the EDM Designer. You
can now designate this entity type as the return type for the function imports in your
EDM that doesn't return entity types. The other alternative is to use the entity client
to invoke stored procedures and perform the CUD operations though the EDM.

Executing stored procedures using
the EDM
Let's now discuss how we can use the entity client to insert the Department data. To
do this, follow these simple steps:

1.	 Create an instance of the EntityConnection class as follows:
 EntityConnection conn = new EntityConnection
 ("Name=PayrollContainer");

2.	 Open the connection by using the EntityConnection instance:
 conn.Open();

3.	 Create an EntityCommand instance and specify the CommandText and
CommandType properties:
 EntityCommand cmd = conn.CreateCommand();
 cmd.CommandText = "PayrollEntities.Insert_Department";
 cmd.CommandType = CommandType.StoredProcedure;

4.	 Add parameters using the AddWithValue method of the Parameters
collection of the EntityCommand instance:
 cmd.Parameters.AddWithValue
 ("DepartmentName", "Finance");

Working with Stored Procedures in the Entity Data Model

[114]

5.	 Next, execute the procedure by using the ExecuteNonQuery method:
 cmd.ExecuteNonQuery();

Here is the complete code listing:

using (EntityConnection conn = new EntityConnection("Name=
PayrollContainer "))
{
 try
 {
 conn.Open();
 EntityCommand cmd = conn.CreateCommand();
 cmd.CommandText = "PayrollEntities.Insert_Department";
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.Parameters.AddWithValue
 ("DepartmentName", "Finance");
 ("CreatedDate_DateCreated", DateTime.Now);

 cmd.ExecuteNonQuery();
 }
 catch (Exception ex)
 {
 Response.Write(ex.ToString());
 }
}

Mapping stored procedures that return
custom entity types
In this section, we will discuss how we can use the EDM to map stored procedures
that return miscellaneous bits of data. Let's consider a scenario where we need
to create an entity that returns the EmployeeID, FirstName, and LastName of all
employees who are no longer working in the organization.

To do this, follow these steps:

1.	 Add a new field of the DateTime type called LeavingDate to the Employee
table in the Payroll database.

2.	 Create a stored procedure called OldEmployees. Here is the script:
 Create procedure OldEmployees
 as
 Select EmployeeID, FirstName, LastName from Employee
 where LeavingDate is not null

Chapter 4

[115]

3.	 Create an entity called OldEmployees in the EDM with the property names
matching the corresponding field names of the stored procedure.

4.	 Create an EntityType called OldEmployees in the CSDL:
 <EntityType Name="OldEmployees">
 <Key>
 <PropertyRef Name="EmployeeID" />
 </Key>
 <Property Name="EmployeeID" Type="Int32"
 Nullable="false" />
 <Property Name="FirstName" Type="Int32"
 Nullable="true" />
 <Property Name="LastName" Type="Int32"
 Nullable="true" />
 </EntityType>

5.	 Create an EntitySet called OldEmployeesSet in the CSDL:
 <EntitySet Name="OldEmployeesSet"
EntityType="PayrollModel. OldEmployees" />

6.	 Create an EntityType called OldEmployees in the SSDL:
 <EntityType Name=" OldEmployees">
 <Key>
 <PropertyRef Name="EmployeeID" />
 </Key>
 <Property Name="EmployeeID" Type="int"
 Nullable="false" />
 <Property Name="FirstName" Type="varchar"
 Nullable="false" MaxLength="50" />
 <Property Name="LastName" Type="varchar"
 Nullable="false" MaxLength="50" />
 </EntityType>

7.	 Create an EntitySet called OldEmployeesSet in the SSDL:
 <EntitySet Name="OldEmployeesSet"
 EntityType="PayrollModel.Store.
 OldEmployees" Schema="dbo"/>

Working with Stored Procedures in the Entity Data Model

[116]

8.	 Create an import function in the CSDL:
 <FunctionImport Name="GetOldEmployees"
 EntitySet="OldEmployee"
 ReturnType="Collection(Self.OldEmployees)" />

9.	 Now, specify the CSDL-MSL mappings in the Mapping Layer (MSL) to
map the Entity in the Conceptual Layer (CSDL) to the entity in the Storage
Layer (SSDL).

That's it. You are done!

Summary
In this chapter, you learned how to map stored procedures in the EDM and use them
in your applications. We have also discussed how we can map stored procedures that
return custom entities.

In the next chapter, we will discuss Entity SQL and Entity Client. We will also see
how we can use them to perform CRUD operations against the EDM.

[117]

Working with Entity Client
and Entity SQL

Entity Framework contains a powerful client-side query engine that allows you to
execute queries against the conceptual model of data, irrespective of the underlying
data store in use. This query engine works with a rich functional language called
Entity SQL (or E-SQL for short), a derivative of Transact SQL (T-SQL), that enables
you to query entities or a collection of entities.

In this chapter, we will take a look at both Entity Client and E-SQL and learn how to
use them in our applications.

We will discuss the following areas:

•	 An overview of the E-SQL language
•	 Differences between E-SQL and T-SQL
•	 When to choose E-SQL over LINQ
•	 Working with the Entity Client
•	 Transaction management in Entity Framework
•	 Deferred loading and eager loading

Before we get started with Entity Client, we should have a proper understanding
of E-SQL. This is a T-SQL-like query language used by the Entity Client provider.
We will start this chapter with a discussion on the E-SQL language, and then discuss
how we can work with the Entity Client provider.

Working with Entity Client and Entity SQL

[118]

An overview of the E-SQL language
Entity Framework allows you to write programs against the EDM and also add a
level of abstraction on top of the relational model. This isolation of the logical view
of data from the Object Model is accomplished by expressing queries in terms of
abstractions using an enhanced query language called E-SQL. This language is
specially designed to query data from the EDM. E-SQL was designed to address
the need for a language that can query data from its conceptual view, rather than
its logical view.

From T-SQL to E-SQL
SQL is the primary language that has been in use for years for querying databases.
Remember, SQL is a standard and not owned by any particular database vendor.
SQL-92 is a standard, and is the most popular SQL standard currently in use.
This standard was released in 1992. The 92 in the name reflects this fact. Different
database vendors implemented their own flavors of the SQL-92 standard.

The T-SQL language was designed by Microsoft as an SQL Server implementation
of the SQL-92 standard. Similar to other SQL languages implemented by different
database vendors, the E-SQL language is Entity Framework implementation of the
SQL-92 standard that can be used to query data from the EDM.

E-SQL is a text-based, provider independent, query language used by Entity
Framework to express queries in terms of EDM abstractions and to query data
from the conceptual layer of the EDM.

One of the major differences between E-SQL and T-SQL is in nested queries. Note
that you should always enclose your nested queries in E-SQL using parentheses as
seen here:

SELECT d, (SELECT DEREF (e) FROM NAVIGATE (d,
PayrollEntities.FK_Employee_Department) AS e) AS Employees FROM
PayrollEntities.Department AS d;

Chapter 5

[119]

The Select VALUE... statement is used to retrieve singleton values. It is also used
to retrieve values that don't have any column names. However, the Select ROW...
statement is used to select one or more rows. As an example, if you want a value
as a collection from an entity without the column name, you can use the VALUE
keyword in the SELECT statement as shown here:

SELECT VALUE emp.EmployeeName FROM PayrollEntities.Employee as emp

The preceding statement will return the employee names from the Employee entity
as a collection of strings.

In T-SQL, you can have the ORDER BY clause at the end of the last query when using
UNION ALL.

SELECT EmployeeID, EmployeeName
From Employee
UNION ALL
SELECT EmployeeID, Basic, Allowances
FROM Salary
ORDER BY EmployeeID

On the contrary, you do not have the ORDER BY clause in the UNION ALL operator
in E-SQL.

Why E-SQL when I already have LINQ to
Entities?
LINQ to Entities is a new version of LINQ, well suited for Entity Framework. But
why do you need E-SQL when you already have LINQ to Entities available to you?
LINQ to Entities queries are verified at the time of compilation. Therefore, it is not
at all suited for building and executing dynamic queries. On the contrary, E-SQL
queries are verified at runtime, so they can be used for building and executing
dynamic queries.

Working with Entity Client and Entity SQL

[120]

You now have a new ADO.NET provider in E-SQL, which is a sophisticated query
engine that can be used to query your data from the conceptual model. It should
be noted, however, that both LINQ and E-SQL queries are converted into canonical
command trees that are in turn translated into database-specific query statements
based on the underlying database provider in use, as shown in the following diagram:

Views
Dynamic

SQL
Stored

Procedure

Application

LINQEntity SQL

Entity Framework

Database

We will now take a quick look at the features of E-SQL before we delve deep into
this language.

Features of E-SQL
These are the features of E-SQL:

•	 Provider neutrality: E-SQL is independent of the underlying ADO.NET data
provider in use because it works on top of the conceptual model.

•	 SQL like: The syntax of E-SQL statements resemble T-SQL.
•	 Expressive with support for entities and types: You can write your E-SQL

queries in terms of EDM abstractions.
•	 Composable and orthogonal: You can use a subquery wherever you have

support for an expression of that type. The subqueries are all treated uniformly
regardless of where they have been used.

Chapter 5

[121]

In the sections that follow, we will take a look at the E-SQL language in depth. We
will discuss the following points:

•	 Operators
•	 Expressions
•	 Identifiers
•	 Variables
•	 Parameters
•	 Canonical functions

Operators in E-SQL
An operator is one that operates on a particular operand to perform an operation.
Operators in E-SQL can broadly be classified into the following categories:

•	 Arithmetic operators: These are used to perform arithmetic operations.
•	 Comparison operators: You can use these to compare the values of

two operands.
•	 Logical operators: These are used to perform logical operations.
•	 Reference operators: These act as logical pointers to a particular entity

belonging to a particular entity set.
•	 Type operators: These can operate on the type of an expression.
•	 Case operators: These operate on a set of Boolean expressions.
•	 Set operators: These operate on set operations.

Arithmetic operators
Here is an example of an arithmetic operator:

SELECT VALUE s FROM PayrollEntities.Salary AS s
 where s.Basic = 5000 + 1000

The following arithmetic operators are available in E-SQL:

•	 + (add)
•	 - (subtract)
•	 / (divide)
•	 % (modulo)
•	 * (multiply)

Working with Entity Client and Entity SQL

[122]

Comparison operators
Here is an example of a comparison operator:

SELECT VALUE e FROM PayrollEntities.Employee
 AS e where e.EmployeeID = 1

The following is a list of the comparison operators available in E-SQL:

•	 = (equals)
•	 != (not equal to)
•	 <> (not equal to)
•	 > (greater than)
•	 < (less than)
•	 >= (greater than or equal to)
•	 <= (less than or equal to)

Logical operators
Here is an example of using logical operators in E-SQL:

SELECT VALUE s FROM PayrollEntities.Salary
 AS s where s.Basic > 5000 && s.Allowances > 3000

This is a list of the logical operators available in E-SQL:

•	 && (And)
•	 ! (Not)
•	 || (Or)

Reference operators
The following is an example of how you can use a reference operator in E-SQL:

SELECT VALUE REF(e).FirstName FROM PayrollEntities.Employee
 as e

The following is a list of the reference operators available in E-SQL:

•	 Key

•	 Ref

Chapter 5

[123]

•	 CreateRef

•	 DeRef

Type operators
Here is an example of a type operator that returns a collection of employees from a
collection of persons:

SELECT VALUE e FROM
 OFTYPE(PayrollEntities.Person, PayrollEntities.Employee) AS e

The following is a list of the type operators available in E-SQL:

•	 OfType

•	 Cast

•	 Is [Not] Of

•	 Treat

Set operators
This is an example of how you can use a set operator in E-SQL:

(Select VALUE e from PayrollEntities.Employee
 as e where e.FirstName Like 'J%') Union All
 (select VALUE s from PayrollEntities.Employee
 as s where s.DepartmentID = 1)

Here is a list of the set operators available in E-SQL:

•	 Set
•	 Union
•	 Element
•	 AnyElement
•	 Except
•	 [Not] Exists
•	 [Not] In
•	 Overlaps
•	 Intersect

Working with Entity Client and Entity SQL

[124]

Operator precedence
When you have multiple operators operating in a sequence, the order in which
the operators will be executed will be determined by the operator precedence.
The following table shows the operator, operator type, and their precedence
levels in E-SQL language:

Operators Operator type Precedence level
. , [] () Primary Level 1
! not Unary Level 2
* / % Multiplicative Level 3
+ and - Additive Level 4
< > <= >= Relational Level 5
= != <> Equality Level 6
&& Conditional And Level 7
|| Conditional Or Level 8

Expressions in E-SQL
Expressions are the building blocks of the E-SQL language. Here are some examples
of how expressions are represented:

1; //This represents one scalar item
{2}; //This represents a collection of one element
{3, 4, 5} //This represents a collection of multiple elements

Query expressions in E-SQL
Query expressions are used in conjunction with query operators to perform a certain
operation and return a result set. Query expressions in E-SQL are actually a series of
clauses that are represented using one or more of the following:

•	 SELECT: This clause is used to specify or limit the number of elements that
are returned when a query is executed in E-SQL.

•	 FROM: This clause is used to specify the source or collection for retrieval of
the elements in a query.

•	 WHERE: This clause is used to specify a particular expression.
•	 HAVING: This clause is used to specify a filter condition for retrieval of the

result set.

Chapter 5

[125]

•	 GROUP BY: This clause is used to group the elements returned by a query.
•	 ORDER BY: This clause is used to order the elements returned in either

ascending or descending order.

Here is the complete syntax of query expressions in E-SQL:

SELECT VALUE [ALL | DISTINCT] FROM expression [,...n] as C [
WHERE expression]
[GROUP BY expression [,...n]] [HAVING search_condition] [
ORDER BY expression]

And here is an example of a typical E-SQL query with all clause types being used:

SELECT emp.FirstName FROM PayrollEntities.Employee emp,
PayrollEntities.Department dept Group By dept.DepartmentName Where
emp.DepartmentID = dept.DepartmentID Having emp.EmployeeID > 5

Identifiers, variables, parameters, and types
in E-SQL
Identifiers in E-SQL are of the following two types:

•	 Simple identifiers
•	 Quoted identifiers

Simple identifiers are a sequence of alphanumeric or underscore characters. Note
that an identifier should always begin with an alphabetical character.

As an example, the following are valid identifiers:

a12_ab
M_09cd
W0001m

However, the following are invalid identifiers:

9abcd
_xyz
0_pqr

Quoted identifiers are those that are enclosed within square brackets ([]). Here are
some examples of quoted identifiers:

SELECT emp.EmployeeName AS [Employee Name] FROM Employee as emp
SELECT dept.DepartmentName AS [Department Name] FROM Department as
 dept

Working with Entity Client and Entity SQL

[126]

Quoted identifiers cannot contain a new line, tab, backspace,
or carriage return characters.

In E-SQL, a variable is a reference to a named expression. Note that the naming
conventions for variables follow the same rules for an identifier. In other words, a
valid variable reference to a named expression in E-SQL should be a valid identifier
too. Here is an example:

SELECT emp FROM Employee as emp;

In the preceding example, emp is a variable reference. Types can be of three versions:

•	 Primitive types like integers and strings
•	 Nominal types such as entity types, entity sets, and relationships
•	 Transient types like rows, collections, and references

The E-SQL language supports the following type categories:

•	 Rows
•	 Collections
•	 References

Row
A row, which is also known as a tuple, has no identity or behavior and cannot
be inherited.

The following statement returns one row that contains six elements:

ROW (1, 'Joydip');

Collections
Collections represent zero or more instances of other instances.

You can use SET () to retrieve unique values from a collection of values. Here is
an example:

SET({1,1,2,2,3,3,4,4,5,5,6,6})

The preceding example will return the unique values from the set. Specifically, 2, 3,
4, 5, and 6.

This is equivalent to the following statement:

Select Value Distinct x from {1,1,2,2,3,3,4,4,5,5,6,6} As x;

Chapter 5

[127]

You can create collections using MULTISET () or even using {} as shown in the
following examples:

MULTISET (1, 2, 3, 4, 5, 6)

The following represents the same as the preceding example:

{1, 2, 3, 4, 5, 6}

Here is how you can return a collection of 10 identical rows each with six elements
in them:

SELECT ROW(1,'Joydip') from {1,2,3,4,5,6,7,8,9,10}

To return a collection of all rows from the employee set, you can use the following:

Select emp from PayrollEntities.Employee as emp;

Similarly, to select all rows from the department set, you use the following:

Select dept from PayrollEntities.Department as dept;

Reference
A reference denotes a logical pointer or reference, to a particular entity. In essence,
it is a foreign key to a specific entity set.

Operators are used to perform operations on one or more operands. In E-SQL,
the following operators are available to construct, deconstruct, and also navigate
through references:

•	 KEY

•	 REF

•	 CREATEREF

•	 DEREF

To create a reference to an instance of Employee, you can use REF() as
shown here:

SELECT REF (emp) FROM PayrollEntities.Employee as emp

Once you have created a reference to an entity using REF(), you can
also dereference the entity using DREF() as shown:

DEREF (CREATEREF(PayrollEntities.Employee,
ROW(@EmployeeID)))

Working with Entity Client and Entity SQL

[128]

Canonical functions in E-SQL
E-SQL supports a wide variety of canonical functions. These can broadly be classified
into the following categories:

•	 Mathematical: These are used to perform calculations based on some
numeric values.

•	 Aggregate: These are used to perform calculations based on a set of
input values.

•	 String: These are used to perform string operations.
•	 Bitwise: These are used to perform bitwise operations.
•	 Date and Time: These are used to perform operations on date and time

values. For example, SystemDateTime values.

Mathematical functions
Here is a list of the mathematical canonical functions available in E-SQL:

•	 Floor (value): Returns the largest integer that is not greater than the
value passed to it as argument.

•	 Abs (value): Returns the absolute value of the value passed to it as argument.
•	 Ceiling (value): Returns the smallest integer that is not less than the

value passed to it as argument.
•	 Round (value): Returns a rounded integer value, rounded to the nearest

integer, for the value passed to it as argument.

Aggregate functions
The following is a list of the aggregate canonical functions available in E-SQL:

•	 Avg (expression): Returns the average of the values passed.
•	 Max (expression): Returns the maximum value of the values passed to it

as argument.
•	 Min (expression): Returns the minimum value of the values passed.
•	 Count (expression): Returns a count of the values passed.
•	 Sum (expression): Returns the sum of the values passed as an expression.

Chapter 5

[129]

The following statement makes use of aggregate canonical functions to return
the minimum, average, and maximum of the basic salary for employees from
the Salary table:

SELECT MIN(s.Basic), AVG(s.Basic), MAX(s.Basic) FROM
PayrollEntities.Salary as s

String functions
This is a list of the string canonical functions available:

•	 Length (string): Returns the length of the string passed to it as an argument.
•	 Concat (string1, string2): Appends the second string to the first, and

returns a new string.
•	 IndexOf (string1, string2): Returns the index or position of the first

string in the second.
•	 Left (string1, length): Returns the number of characters specified by

length from the left of the string instance represented by string1.
•	 Trim (string1): Trims the leading and trailing spaces from the string

instance passed to it as argument.
•	 LTrim (string1): Trims the leading spaces only from the string instance.
•	 RTrim (string1): Trims the trailing spaces only from the string instance.
•	 Substring (string1, start position, length): Returns a substring

from the string instance beginning with the start position and represented
by the number of characters specified by length.

•	 Reverse (string1): Reverses the string instance passed to it as argument.
•	 Replace (string1, string2, string3): Replaces all occurrences of

string2 with string3 in the instance string1.

Bitwise functions
The following is a list of the bitwise canonical functions available in E-SQL:

•	 BitwiseAnd (value1, value2): Performs a bitwise And operation between
value1 and value2.

•	 BitwiseOr (value1, value2): Performs a bitwise Or operation between
value1 and value2.

•	 BitwiseNot (value): Performs a bitwise Not operation with the value
passed to it as argument.

•	 BitwiseXor (value1, value2): Performs a bitwise XOR operation between
value1 and value2.

Working with Entity Client and Entity SQL

[130]

Date and time functions
Here is a list of the available date and time canonical functions:

•	 GetDate(): Gets the current system datetime value.
•	 Second (datetime): Returns the second portion of the current system

datetime value.
•	 Minute (datetime): Returns the minute portion of the current system

datetime value.
•	 Hour (datetime): Returns the hour portion of the current system

datetime value.
•	 Day (datetime): Returns the day portion of the current system date.
•	 Month (datetime): Returns the month portion of the current system date.
•	 Year (datetime): Returns the year portion of the current system date.

Data paging using E-SQL
Data paging is a concept that allows you to retrieve a specified number of records and
display them in the user interface. The data is displayed one page at a time. You can
use data paging to split the data rendered to the user into multiple pages for faster page
downloads, an increase to user interface flexibility, and minimal load on the database
server. Paging can be used when the volume of data to be displayed is substantial and
you need it to be divided into pages of data records to be displayed more efficiently.

The following statement will return a result set that contains the top 10 records of the
Employee table, ordered by employee names:

SELECT emp FROM PayrollEntities.Employee AS emp ORDER BY
emp.EmployeeName LIMIT 10;

Suppose you need to display records 11 to 20 from the Employee table. Here is how
you can do this:

SELECT emp FROM PayrollEntities.Employee AS emp ORDER BY
emp.EmployeeName SKIP 10 LIMIT 10;

How does it work? When you say SKIP 10, it will skip 10 records while the LIMIT
clause limits the retrieval to 10 records only. Therefore, you end up with records 11
to 20 from the Employee table.

LINQ to SQL also has SKIP and TAKE. It is important to know that
this is database paging where only the relevant rows are returned
versus the default paging of standard ASP.NET data controls.

Chapter 5

[131]

Working with the ADO.NET Entity Client
The ADO.NET Entity Client is a data provider that provides a gateway to execute
entity level queries using Entity Framework. You can use it to query against your
conceptual model of data. Entity Client uses its own language called E-SQL, a
storage independent language, to communicate with the conceptual model. You can
execute the same E-SQL query against any data store. In other words, it is provider
independent, and you need not make changes to your query if the underlying data
store changes. Therefore, you can use the same E-SQL syntax to communicate to the
conceptual model, regardless of the data store in use.

The E-SQL queries are converted to a command tree that is in turn passed to the
storage-specific provider to generate native SQL statements. As an example, if you
are using SQL Server as the database, the E-SQL queries that you are using will be
converted to a command tree that will be passed to the ADO.NET provider for the
SQL Server. This allows the ADO.NET provider to generate statements specific to
SQL Server database.

The diagram that follows illustrates how the Object Services, Entity Client, and the
ADO.NET data providers are related:

LINQ to
Entities

Entity
SQL

Query

Entity
SQL

Query

Object Services

EntityClient Data Provider

ADO.NET Data Providers

Conceptual
Layer

Storage
Layer

Mapping
Layer

Database

IEnumerable
<T>

EntityDataReader

DBDataReader

Command
Tree

Command
Tree

Working with Entity Client and Entity SQL

[132]

The EDM (we discussed this in Chapter 1, Introducing the ADO.NET Entity Framework
earlier) is stored in either an .edmx file or using code-first approach. Prior to Entity
Framework 7, there were two storage models—the EDMX file format based on
XML schema or code. With Entity Framework 7, the EDMX file format would be
dropped—we would have only the code-based format. Interestingly, this approach
is also termed as the "Code First Only" approach.

Similar to the ADO.NET provider, the Entity Client provider follows the pattern of
connection, command, or DataReader, and so forth. The class names are all prefixed
with Entity. Therefore, you have classes, such as EntityConnection that represents
a connection, EntityCommand that represents a command, EntityDataReader that
represents a data reader, and so on.

In this section, we will take a look at how we can use the ADO.NET Entity Client
to execute queries against the Entity Data Model. The System.Data.EntityClient
namespace represents the ADO.NET Entity Client Provider. That is, a standard
ADO.NET managed provider that we will use to access a database and execute
queries or perform inserts, updates, and deletes. To illustrate the resemblance between
Entity Client data provider and ADO.NET data provider, here are two samples:

First, this is how you use the ADO.NET data provider to connect to a database and
display records from its table:

using (SQLConnection sqlConnection = new
SQLConnection(connectionString))
{
 sqlConnection.Open();
 String queryString = "Select * from Employee";
 SQLCommand sqlCommand = new SQLCommand(queryString,
 sqlConnection);
 SQLDataReader dataReader =
 sqlCommand.ExecuteReader(CommandBehavior.SequentialAccess);
 while (dataReader.Read())
 {
 Console.WriteLine(dataReader.GetValue(0));
 }
}

Second, here is the E-SQL counterpart of what was just demonstrated:

using (EntityConnection entityConnection = new
EntityConnection(connectionString))
{
 entityConnection.Open();

Chapter 5

[133]

 String queryString = "Select value e from
 PayrollEntities.Employee as e";
 using (EntityCommand entityCommand = new
 EntityCommand(queryString, entityConnection))
 {
 using (DbDataReader dataReader =
 entityCommand.ExecuteReader(CommandBehavior.SequentialAccess))
 {
 while (dataReader.Read())
 {
 Console.WriteLine(dataReader.GetValue(0));
 }
 }
 }
 }

Let's get into action
The following is a sequence of steps you can follow to work with the Entity Client:

1.	 Building a connection string.
2.	 Creating an entity connection.
3.	 Opening the connection.
4.	 Executing queries using entity command.
5.	 Closing the connection.

Building the connection string
You can use the EntityConnectionStringBuilder class to create your database
connection string and use it to connect to the database. This section discusses how
this is accomplished.

To build a connection to use with the Entity Client, follow these steps:

1.	 Create an instance of the SqlConnectionStringBuilder class and specify
the data source, database name, database server to connect to the user ID
and password:
 SqlConnectionStringBuildervar
 sqlConnectionStringBuilder =
 new SqlConnectionStringBuilder();
 sqlConnectionStringBuilder.DataSource = ".";
 sqlConnectionStringBuilder.InitialCatalog = "test";
 sqlConnectionStringBuilder.IntegratedSecurity = false;

Working with Entity Client and Entity SQL

[134]

 sqlConnectionStringBuilder.UserID = "sa";
 sqlConnectionStringBuilder.Password = "sa";

2.	 Now, create an instance of the EntityConnectionStringBuilder class
and specify the metadata location, the provider name, and the provider
connection string:
 EntityConnectionStringBuilder var
 entityConnectionStringBuilder =
 new EntityConnectionStringBuilder();
 entityConnectionStringBuilder.Metadata = ".";
 entityConnectionStringBuilder.Provider =
 "System.Data.SqlClient";
 entityConnectionStringBuilder.ProviderConnectionString
 = sqlConnectionStringBuilder.ToString();
 entityConnectionStringBuilder.Metadata = ".";

Creating an entity connection
Now that we have built our entity connection string, we will create an entity
connection instance and open the connection.

You need to create the entity connection instance using the EntityConnection class
and pass the connection string we just created to the constructor. This is how it is done:

EntityConnection var entityConnection =
 new
 EntityConnection(entityConnectionStringBuilder.ToString());

Opening the connection
To open the connection, you need to invoke the Open method on the entity
connection instance as shown here:

entityConnection.Open();

Before we move ahead, we should test the connection to verify whether the connection
was opened successfully. Here is how you can do this:

using (EntityConnection var entityConnection =
 new
 EntityConnection(entityConnectionStringBuilder.ToString()))
{
 entityConnection.Open();
 if(entityConnection.State == ConnectionState.Open)
 Console.WriteLine("Connection opened successfully.");
}

Chapter 5

[135]

Note the use of the keyword using. When you execute the mentioned snippet, the
message Connection opened successfully will be displayed. Once you have opened
the connection, you can begin executing your queries using E-SQL.

Executing queries using the entity command
Let's use an example to help us understand how you can make use of E-SQL to
leverage the power of EDM. Suppose you need to display the names and contact
details of all the employees who are working in the HR department, this is how
you can do it using T-SQL:

SELECT Employee.FirstName, Employee.LastName, Contact.Address,
Contact.PhoneNo FROM Employee, Contacts, Department
INNER JOIN
 Contacts ON Employee.ContactID = Contact.ContactID
INNER JOIN
 Department ON Employee.DepartmentID = Department.DepartmentID
WHERE Department.DepartmentName = "HR"

If you use E-SQL, the query can become much simpler:

SELECT FirstName, LastName, Address, PhoneNo FROM HREmployees

No joins! Yes, now you can do this without joins. You simply need to inherit a new
entity called HREmployees from Employee, Contacts, and Department entities. Note
that the fields FirstName, LastName, Address, and PhoneNo will be the properties of
this new derived entity. We just changed from the database schema-specific T-SQL
to a more abstract E-SQL that queries against a conceptual model of our data, rather
than a logical model as in the former case.

What we require now is an entity command instance to execute the query. Here is
how you can do this:

String sqlString = "SELECT FirstName, LastName, Address, PhoneNo
FROM HREmployees";
EntityCommand entityCommand = new EntityCommand (sqlString,
entityConnection);

So, what did we just do? We created an entity command instance and passed the
query string and the entity connection instance to its constructor as parameters.

Now that our entity command instance is in place, we can execute the query as shown:

EntityDataReadervar entityDataReader = entityCommand.ExecuteReader
(CommandBehavior.SequentialAccess);

Working with Entity Client and Entity SQL

[136]

Refer to the preceding code snippet. We called the ExecuteReader method on the
entity command instance to execute the query. This method will execute the query
and return a result set as an entity data reader instance.

To iterate through the records, we need to call the Read method on the entity data
reader instance as shown here:

while (reader.Read())
{

}

We will now iterate this instance and display the records as shown:

while (reader.Read())
 Console.Write(reader[0].ToString()+"\t"+
 reader[1].ToString());

Adding properties that do not have a corresponding database mapping
Note that you cannot add a property in the model unless it has a
corresponding database mapping. You can, however, overcome this
limitation using partial classes. Here is how you can add a new property
called PFACCNo (that doesn't have a corresponding mapping in the
database) in the Employee entity:

namespace Payroll
{
 public partial class Employee
 {
 public int PFACCNo
 {
 get;set;
 }
 }
}

Closing the connection
If you are done using the entity connection instance, you should close your connection
by invoking the Close method on your entity connection instance. This is how you can
do this:

entityConnection.Close();

Chapter 5

[137]

You can also check whether the connection is open prior to closing using the
ConnectionState enum as shown here:

if(entityConnection.State == ConnectionState.Open)
 entityConnection.Close();

And, this is the complete source code of what we just did:

SqlConnectionStringBuildervar sqlConnectionStringBuilder = new
SqlConnectionStringBuilder();
sqlConnectionStringBuilder.DataSource = ".";
sqlConnectionStringBuilder.InitialCatalog = "test";
sqlConnectionStringBuilder.IntegratedSecurity = false;
sqlConnectionStringBuilder.UserID = "sa";
sqlConnectionStringBuilder.Password = "sa";

EntityConnectionStringBuildervar entityConnectionStringBuilder =
new EntityConnectionStringBuilder();
entityConnectionStringBuilder.Metadata = ".";
entityConnectionStringBuilder.Provider = "System.Data.SqlClient";
entityConnectionStringBuilder.ProviderConnectionString =
sqlConnectionStringBuilder.ToString();
entityConnectionStringBuilder.Metadata = ".";

using (EntityConnection var entityConnection =
 new EntityConnection(entityConnectionStringBuilder.ToString()))
{
 entityConnection.Open();
 String var sqlString = "SELECT FirstName, LastName, Address,
 PhoneNo FROM HREmployees";
 EntityCommand var entityCommand = new EntityCommand (sqlString,
 entityConnection);
 EntityDataReadervar entityDataReader =
 entityCommand.ExecuteReader
 (CommandBehavior.SequentialAccess);

 while (reader.Read())
 Response.Write(reader[0].ToString()+"\t"+
 reader[1].ToString());

 if(entityConnection.State == ConnectionState.Open)
 entityConnection.Close();
}

Working with Entity Client and Entity SQL

[138]

Other operations with E-SQL
In this section, we will take a look at how we can perform some additional
operations with the E-SQL language. We will discuss the following:

•	 Inserting a record using E-SQL
•	 Inserting a record with a foreign key constraint
•	 Retrieving native SQL from EntityCommand
•	 Transaction management in E-SQL

Inserting a record using E-SQL
You can use E-SQL statements and easily perform CRUD operations. Let's assume
that you have a stored procedure called InsertDesignation and you would like
to use it to store a record in the designation table of your Payroll database. This is
the code:

using (EntityConnection var conn = new
EntityConnection("Name=PayrollEntities"))
 {
 try
 {
 conn.Open();
 EntityCommandvar cmd = conn.CreateCommand();
 cmd.CommandText = "PayrollEntities.Employee_Insert";
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.Parameters.AddWithValue("FirstName", "Joydip");
 cmd.Parameters.AddWithValue("LastName", "Kanjilal");
 cmd.Parameters.AddWithValue("Address", "Kolkata");
 cmd.Parameters.AddWithValue("Phone", "123456789");
 cmd.Parameters.AddWithValue("JoiningDate", DateTime.Now);
 cmd.Parameters.AddWithValue("LeavingDate", null);
 cmd.Parameters.AddWithValue("DepartmentID", 2);
 cmd.Parameters.AddWithValue("DesignationID", 1);
 cmd.ExecuteNonQuery();
 }
 catch (Exception ex)
 {
 Console.Write(ex.ToString());
 }
}

Chapter 5

[139]

Inserting a record with a foreign key constraint
Here is an example that shows how you can insert a single row that has a foreign key
constraint without doing an extra select:

Employeevar employee = new Employee();
employee.EmployeeID = 25;
employee.EmployeeName = "Rituraj";
employee.DepartmentMasterReference = new
System.Data.Objects.DataClasses.EntityReference<Department>();
employee.DepartmentMasterReference = new
EntityKey("PayrollEntities.Department", "DepartmentID", "3");

Retrieving native SQL from EntityCommand
You can retrieve native SQL from an EntityCommand instance using the
ToTraceString method on the EntityCommand instance. Here is an example:

using (EntityConnection var entityConnection = new
EntityConnection
(ConnectionString))
{

Stringvar sqlString = "SELECT VALUE emp from
PayrollEntities.Employee as emp";

 EntityCommandvar entityCommand =
 entityConnection.CreateCommand();
 entityCommand.CommandText = sqlString;
 entityConnection.Open();

 // Displaying the Entity SQL text using the
 CommandText property

 Console.WriteLine(entityCommand.CommandText);

 // Display the T-SQL text using the
 ToTraceString() method.

 Console.WriteLine(entityCommand.ToTraceString());

 //Other code

 entityConnection.Close();

}

Working with Entity Client and Entity SQL

[140]

Transaction management in E-SQL
A transaction is a group of statements that are guaranteed to be executed in their
entirety atomically. If any statements inside a transaction fail, the entire transaction
is rolled back. In other words, any changes to the database are rolled back, if changes
were indeed made. You can use transactions in two ways in Entity Framework.
Namely, using either the EntityTransaction class or the System.Transactions
namespace. EntityTransaction is an enhanced version of System.Data.Common.
DbTransaction with better support for transaction commit and rollbacks. However,
you can't create an instance of EntityTransaction as its constructor is internal.

This is an example of how you can use the EntityTransaction class for transaction
management in Entity Framework:

using(EntityConnection var entityConnection = new EntityConnection
(connectionString))
{
 entityConnection.Open();
 EntityTransaction var entityTransaction = entityConnection.
 BeginTransaction(IsolationLevel.Snapshot);
 EntityCommandvar entityCommand1 =
 entityConnection.CreateCommand();
 entityCommand1.CommandText = "SELECT VALUE e FROM
 PayrollEntities.Employee AS e";
 entityCommand1.Transaction = entityTransaction;
 EntityDataReader var entityDataReader1 =
 entityCommand.ExecuteReader();
 while(entityDataReader1.Read())
 {

 //Some code
 EntityCommandvar entityCommand2 = con.CreateCommand();
 entityCommand2.CommandText =
 "SELECT Value s from PayrollEntities.Sales as s
 Where s.EmployeeID = @EmployeeID";
 entityCommand2.Transaction = entityTransaction;
 DbDataReader dataReader = entityCommand2.ExecuteReader();
 // Do some processing here
 }
 entityTransaction.Commit();
}

Chapter 5

[141]

It should be noted that when you call the BeginTransaction method on the
connection instance, it starts an explicit transaction on that instance. However, if
you want to perform a number of operations on different databases within a single
transaction, you can use a transaction scope. In other words, if you are using multiple
connection instances belonging to different databases, then, using a transaction scope
is a better choice.

You can start a transaction scope by creating an instance of the TransactionScope
class as shown:

TransactionScope var transactionScope = new TransactionScope();

Here is an example that illustrates how you can use TransactionScope in
your applications:

EntityConnection var entityConnection = new EntityConnection
(ConnectionString);
using (TransactionScope var transactionScope = new
TransactionScope())
 {
 using (PayrollEntitiesvar payrollEntities =
 new PayrollEntities(entityConnection))
 {
 var query = payrollEntities.CreateQuery
 <Employee>("Select value e from Employee
 as e");
 foreach (Employee emp in query)
 {
 Console.WriteLine(emp.FirstName);
 }
 }
 using (PayrollEntitiesvar payrollEntities =
 new PayrollEntities(entityConnection))
 {
 var query = payrollEntities.CreateQuery
 <Department>("Select value d from
 Department as d");
 foreach (Department dept in query)
 {
Console.WriteLine(dept.DepartmentName);
 }
 }
 ts.Complete();
 }

Working with Entity Client and Entity SQL

[142]

Deferred, eager, and lazy loading
Eager loading refers to the process in which a query, when executed on a particular
type of an entity, also loads the related entities at the same time. Lazy loading and
eager loading are used for loading related entities that pertain to an entity. In the
former case, the related entities are not loaded automatically along with its parent
entity unless they are requested. In the latter case, the related entities are loaded
automatically along with the parent entity.

To achieve eager loading in Entity Framework, you need to make use of the
Include method.

Here is an example:

using (var context = new SecurityContext())
{
 // Load all user types and the related users
 var data = context.UserTypes
 .Include(u => u.Users)
 .ToList();
 // Load one user type and its related users
 var data = context.UserTypes
 .Where(u => u.UserType == "ADUser")
 .Include(b => b.Users)
 .FirstOrDefault();
}

The following code snippet illustrates how eager loading can be achieved at
multiple levels:

using (var context = new SecurityContext())
{
 // Load user types, all the related users and all related user
 login history
 var data = context.UserTypes
 .Include(u => u.UserTypes.Select(x =>
 x.UserLoginHistory))
 .ToList();
}

Lazy loading on the contrary is a process in which an entity or a collection of entities
are loaded automatically only from the database the first time when a property of the
entity or entities are accessed. Lazy loading enables an entity to be loaded late—it's
loaded on demand actually. To achieve lazy loading of entities in Entity Framework,
virtual properties in the POCO entity classes are used.

Chapter 5

[143]

public class UserType
{
 public int UserTypeId { get; set; }
 public virtual ICollection<User> Users { get; set; }
}

To turn off lazy loading for entities, you can set the LazyLoadingEnabled property
to false in your data context.

public class SecurityContext : DbContext
{
 public SecurityContext()
 {
 this.Configuration.LazyLoadingEnabled = false;
 }
}

Note that even if lazy loading is disabled in your data context, you can still explicitly
lazy load entities. To do this, you will need to explicitly invoke the Load method on
the entity. Here is an example code that illustrates this:

using (var context = new SecurityContext())
{
 var data = context.UserTypes.Find(2);

 // Load the user related to a given user type
 context.Entry(data).Reference(p => p.User).Load();

 // Load the user related to a given user type using a string
 context.Entry(data).Reference("User").Load();
}

Summary
In this chapter, we explored E-SQL and how it can be used with the Entity
Client provider to perform CRUD operations in our applications. We discussed
the differences between E-SQL and T-SQL and the differences between E-SQL
and LINQ. We also discussed when one should choose E-SQL instead of LINQ
to query data in applications.

In the next chapter, we will take a look at Object Services and discuss how they
can be used to perform CRUD operations against the Entity Data Model.

[145]

Working with LINQ to Entities
Language Integrated Query (LINQ) is a query translation pipeline that has been
introduced as part of the C# 3.0 language. It is an extension to the C# language and
provides a simplified framework to access relational data in a strongly typed and
object-oriented way. You can even use LINQ to query data from other data sources,
such as XML, objects, and collections. Before LINQ, we used PL-SQL and T-SQL to
query data from databases. However, none of them is type safe and does not have
compile time checks to verify whether the statements are correct at compile time.

In this chapter, we will discuss LINQ to Entities. You will learn how to use LINQ
on top of Entity Framework and how LINQ can be used to query data against
the EDM. We will start our discussion with a quick look at what LINQ is and
examine some of its features.

In this chapter, you will learn about the following:

•	 Introducing LINQ
•	 Benefits and features of LINQ
•	 Components of the LINQ architecture
•	 Understanding LINQ to Entities
•	 Operators in LINQ
•	 Expressions in LINQ
•	 Querying data from the Security database using LINQ to Entities

Working with LINQ to Entities

[146]

Introducing LINQ
LINQ is a query execution pipeline used in the managed environment of .NET
Framework. In essence, LINQ is Microsoft's object relational mapper between
your business objects and the underlying data sources, and provides a simplified
framework for accessing relational data in an object-oriented fashion.

LINQ can be used to map your business objects and the underlying data sources.
These data sources can be databases, objects, collections of objects, or even XML
document files. Note that both C# (from version 3.0 on) and VB.NET (from version
9 on) have support for LINQ.

LINQ is a part of the new versions of the C# and VB.NET compilers, and it comes
with a powerful set of operators to ease the task of querying different data sources,
such as SQL Server, XML, and so on. LINQ comprises a standard set of operators to
facilitate query operations. We will learn more about LINQ query operators later in
this chapter.

Why LINQ?
We often require querying data and display them in the presentation layer of our
applications. Before LINQ, we used PL-SQL and T-SQL queries to query data from
data sources. The problem with such queries is that there are no compile-time checks.
With LINQ, you now can do a compile-time check and use your type-safe queries
to query data not only from databases, but also from XML data sources, objects, and
collections of objects. Also, LINQ offers several additional methods, such as Any,
First, and Last to name a few, which aren't available in traditional SQL (or need
vendor-specific syntax). Now, why should I switch to LINQ? It should be noted
that LINQ is very useful for querying local collections and XML DOMs. LINQ was
introduced to help developers work with databases without needing to use T-SQL
and SQL. LINQ was introduced as common query syntax to let it work with storage
types, such as XML datasets, objects (collections and arrays), and SQL database tables.

The main problem LINQ solves is that it works to remove the impedance mismatch
with the relational data store. Note that LINQ also offers several additional methods,
such as Any, First, and Last to name a few, which aren't available in traditional SQL
to facilitate querying data.

LINQ is a useful new feature available as a part of C# 3.0 and higher. It allows you
to integrate queries directly into your programs. It is an extension to the C# language
and provides a simplified framework for accessing relational data in a strongly typed
and object-oriented manner.

Chapter 6

[147]

Here is how you can search for an employee from our Employee table using LINQ:

var result =
 from emp in Employee
 where emp.FirstName == "Sabita"
 select c.EmployeeID;

The preceding query will return an array of the employee IDs for employees whose
FirstName starts with Sabita.

Note that there are two different syntaxes of LINQ. One using query syntax and the
other one using extension (or dot) syntax. Apart from being type safe and having
the ability to check queries at compile time, you can easily debug your LINQ queries
comfortably, which is a very important feature indeed.

Understanding the LINQ architecture
A query language is one that is used to query data in our applications. In LINQ, we
have compile-time checks and type safety. Your queries will be verified for accuracy
(if the database hasn't changed) during the compile time itself!

In this section, we will discuss the basic components of the architecture of LINQ. We
will now familiarize ourselves with LINQ fundamentals, the components involved in
its architecture, and so on. The following image illustrates the LINQ architecture:

CLR-compliant languages that have support for LINQ

C# VB.NET F#

Language Integrated Query (LINQ)

LINQ Data Sources

XML Files Business
Entities

In-memory
Objects

SQL Server
Database DataSets

LINQ to
XML

LINQ to
Entities

LINQ to
Objects

LINQ to
SQL

LINQ to
DataSets

Working with LINQ to Entities

[148]

The following sections discuss the different flavors of LINQ in brief.

LINQ to XML
LINQ to XML maps your LINQ queries or LINQ statements to the corresponding
XML data sources. It allows you to use the LINQ standard query operators to
retrieve XML data. LINQ to XML is commonly known as XLINQ. You can also
use LINQ to query your in-memory collections and business entities, objects that
contain data related to a particular entity, seamlessly.

LINQ to SQL
Similar to XLINQ, you also have Dynamic LINQ (DLINQ), which is an
implementation of LINQ that allows you to query your databases. LINQ to SQL,
or DLINQ as it is called, is actually a very simple basic ORM tool. It is not a complete
ORM tool because it lacks some of the features that an ORM has. For example, it does
not support state management and data generations.

DLINQ provides a runtime framework that translates LINQ queries into SQL.
Once these SQL statement(s) are executed, the results are then translated back into
the objects defined in the object model. This enables your application to manipulate
these objects as needed. As you change the objects in-memory, DLINQ tracks these
changes. This helps you to optionally submit these changes back to the database to
perform CRUD operations.

Think of a typical SQL query like this:

SELECT * from Salary Where Basic > 5000

Here is how you can write the same query using LINQ:

var query = from s in Salary where s.Basic > 5000 select s;

When using LINQ to SQL, the DataContext class in the System.Data.Linq
namespace is used to create your data contexts. All of your data context classes
will be derived from the base DataContext class. The DataContext classes are
responsible for generating the corresponding SQL statements when using LINQ
to SQL. In other words, the DataContext accepts the LINQ statements as input,
processes them, and produces the corresponding T-SQL statements as output.

Chapter 6

[149]

The following code snippet illustrates how a new database can be created using the
DataContext class:

static string GetConnectionString()
 {
 System.Data.SqlClient.
SqlConnectionStringBuilderSqlConnectionStringBuildervar builder =
 new
 System.Data.SqlClient.SqlConnectionStringBuilder();
 builder["Data Source"] = "JoydipPC";
 builder["integrated Security"] = true;
 builder["Initial Catalog"] = "PacktDB";
 return builder.ConnectionString;
 }

static void Main(string[] args)
 {
 DataContextDataContextvar context = new
 DataContext(GetConnectionString());
 context.CreateDatabase();
 }

The DataContext class creates a connection to the database, converts
objects to SQL statements, and performs CRUD operations against the
database. To use LINQ in your programs, you must add a reference to
System.Core.dll and specify the System.Linq namespace in the
using statement.

LINQ to Objects
LINQ to Objects is another flavor of LINQ that is used to query in-memory objects or
collections of objects. Note that LINQ to Objects works with System.Collections.
IEnumerable<T> or T:System.Collections.Generic in-memory objects or
collections of objects. Here is an example of a typical LINQ to Objects query that
displays the numbers 1 to 9:

var myCollection = new[] { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
var data = from d in myCollection
 select d;
foreach (var i in data)
{
Console.WriteLine(i);
 }

Working with LINQ to Entities

[150]

Let's look at another example that illustrates how you can use LINQ to query a
collection of objects. Consider an Employee class with three properties as follows:

class Employee
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Address { get; set; }
 }

Now, you can use LINQ to Objects to query instances of Employee as follows:

var employees = new List<Employee> { new Employee
 { FirstName = "Joydip", LastName = "Kanjilal",Address
 = "Bangalore" },
 new Employee { FirstName = "Douglas", LastName =
 "Paterson",Address = "Birmingham"},
 new Employee { FirstName = "Sabita", LastName =
 "Kanjilal", Address = "Kolkata" }
 };
 var query =
 from employee in employees
 orderby employee.FirstName
 select employee;

In the preceding code snippet, a list of employee objects is created, and then LINQ to
Objects is used to iterate the collection.

LINQ to Entities
LINQ, as we already know, defines a set of operators, such as query operators and
projection operations, that enables you to query data, traverse data, and express the
query and projection operations declaratively in any programming language that
targets the Microsoft .NET Framework.

LINQ to Entities enables you to query your business objects from within the
language in a strongly typed manner. You can use it to query business objects or
collections of business objects from the conceptual data model such as the EDM.
LINQ to Entities uses Object Services to query data from the EDM. Object Services
can be used to query data from almost any data store with less code. Apart from
enabling you to perform CRUD operations, the Object Services Layer provides many
additional services such as change tracking, lazy loading, and support for querying
data using Entity SQL and LINQ to Entities. Note that the Object Services Layer
internally uses an ObjectQuery object for query processing. We will take a detailed
look at Object Services in the next chapter.

Chapter 6

[151]

Note that LINQ to Objects is a set of extension methods that work on
IEnumerable<T> and can be used to execute queries on an arbitrary
sequence of objects. In essence, LINQ to Objects refers to the usage of
LINQ queries with any IEnumerable or an IEnumerable collection,
but without the usage of any LINQ provider like LINQ to XML or LINQ
to SQL. On the contrary, LINQ to Entities is a data provider in LINQ that
contains a set of extension methods that work on IQuerable<T>. Note
that because the IQueryable<T> interface extends IEnumerable<T>,
anything that is possible with IEnumerable<T> is also possible with
IQueryable<T>. The IEnumerable<T> interface has a method called
GetEnumerator() that returns Enumerator<T>. You use LINQ to
Entities to query data against the EDM.

Querying data using LINQ to Entities
Here is an example of a typical LINQ to Entities query that returns all department
names from the Department table of the Payroll database:

PayrollModel.PayrollEntitiesvar ctx = new PayrollModel.
PayrollEntities();

 var query = from dept in ctx.Departments
 select dept;

 foreach (var department in query)
 Console.WriteLine(department.DepartmentName);

LINQ to Entities and Entity Framework
Where does LINQ to Entities fit in exactly? You can use LINQ to Entities to query the
EDM to retrieve entities or collections of entities. In essence, LINQ to Entities provides
you strongly typed access to data that is exposed by the Entity Data Model. In other
words, LINQ to Entities enables you to write your queries against a conceptual model
of data. It also enables you to create and execute strongly typed and composable
queries against the EDM to retrieve entities or collections of entities.

LINQ to Entities uses the Object Services infrastructure to query data from the
conceptual model. The ObjectContext and ObjectQuery classes are two of the
most important classes that you use when working with LINQ to Entities. The
ObjectContext class is used to compose an ObjectQuery instance. The generic
ObjectQuery class represents an entity or a collection of typed entity instances. It
should be noted that LINQ to Entities queries are internally translated to canonical
query trees. They are then converted internally to corresponding SQL queries in a
form expected by your underlying database.

Working with LINQ to Entities

[152]

This is how LINQ to Entities and Entity Framework are related to each other:

ADO.NET Entity Data Model

Object Services Entity Client

LINQ to Entities

ADO.NET Data Providers

ADO.NET Entity Services Layer

Differences between LINQ to Entities and LINQ
to SQL
LINQ to Entities is a super set of LINQ to SQL. The primary use of LINQ to Entities
is in defining a domain model for the application and using it for persisting data in
the underlying data store that the application uses. LINQ to SQL, on the other hand,
is ideal for two-tiered, three-tiered, or even n-tiered applications.

It should be noted that Microsoft initially had plans to provide
support for multiple databases in LINQ to SQL. However, Microsoft
has lost interest in the development of LINQ to SQL. Microsoft is
more interested in the development of Entity Framework primarily
because it has numerous powerful features such as entity splitting,
support for table per class, and table per type inheritance models,
and it can also support multiple databases.

Two of the major areas where LINQ to Entities is superior to LINQ to SQL are entity
inheritance and entity composition. Using LINQ to Entities, you can create new
entities by inheriting existing ones and even create entities that are composed of
properties of one or more entities.

Both LINQ to SQL and LINQ to Entities support default
inheritance models. That is, you can use both of them to
inherit new entities from existing ones.

Chapter 6

[153]

So, which one should you choose and when should you choose it? Generally, Entity
Framework and LINQ to Entities is a good choice over LINQ to SQL (formerly,
DLINQ), if you want your application's code to be loosely coupled and isolated from
the changes that may occur in the relational or logical schema of data. It is also a good
choice if you want to inherit or compose entities. These features are otherwise not
provided by default with LINQ to SQL.

Parallel LINQ
Parallel LINQ is a concurrency execution engine from Microsoft that can be used to
execute LINQ queries in parallel by leveraging the multicore processors. It is a part
of the managed concurrency library called Parallel Extensions Library. The Parallel
Extensions library is comprised of the following:

•	 Task Parallel Library (TPL)
•	 Parallel LINQ (PLINQ)

In their MSDN article, Running Queries On Multi-Core Processors, Joe Duffy and Ed
Essey state:

"PLINQ is a query execution engine that accepts any LINQ-to-Objects or
LINQ-to-XML query and automatically utilizes multiple processors or cores for
execution when they are available."

The reference is available at: http://msdn.microsoft.com/en-us/magazine/
cc163329.aspx.

The following code snippet illustrates how PLINQ can be used:

Int32[] data = new Int32[100];
 for (intintvar index = 0; index < 100; data[index] =
 index + 1, index++);
 var result = from x in data.AsParallel() select x;
 result.ForAll(p => Console.WriteLine(p));

Operators in LINQ
Operators are those that operate on operands to perform a certain task. Powered
by a rich set of query operators and expressions, you can use LINQ with absolutely
any data, such as relational databases and XML files. Moreover, LINQ is type safe
and extensible.

http://msdn.microsoft.com/en-us/magazine/cc163329.aspx
http://msdn.microsoft.com/en-us/magazine/cc163329.aspx

Working with LINQ to Entities

[154]

It's worth noting that in some LINQ implementations,
not every operator will be available.

LINQ offers a collection of powerful operators that make the task of querying data
much easier. We will explore how we can work with LINQ operators in the sections
that follow.

Most standard query operators operate on a sequence where the
latter is an object of type IEnumerable<T> or the IQueryable<T>
interfaces. The standard query operators can be divided into two
groups. One group works on objects of type IEnumerable<T>, and
the other group works with objects of type IQueryable<T>.

Aggregation
You can use the aggregation operator Sum in a LINQ to Entities query as shown here:

using (PayrollEntitiesvarentities = new PayrollEntities())
 {
 var query = from s in entities.Salaries
 where entities.Salaries.Sum(sal => s.Basic
 + sal.Allowances) >= 15000
 select s;
 foreach (var salary in query)
 {
 Console.Write(salary.Employee.EmployeeName);
 }
 }

The mentioned query returns the names of employees whose total salary
exceeds 15000.

Similarly, you can use the Count operator to display the total number of records
retrieved from the mentioned query as shown in the following code snippet:

using (PayrollEntitiesvarentities = new PayrollEntities())
 {
 var query = (from s in entities.Salaries
 where entities.Salaries.Sum(sal => s.Basic
 + s.Allowances) >= 15000
 select s).Count();

 Console.Write("Total no of records: " +
 query.ToString());
 }

Chapter 6

[155]

Projections
The following query illustrates how you can create a projection of a new entity that
contains the gross salary of employees, which includes the total of the allowances
and basic:

using (PayrollEntitiesvarentities = new PayrollEntities())
 {
 var query = from s in entities.Salaries
 where entities.Salary.Sum(sal => s.Basic +
s.Allowances) >= 150000
 select new {Gross = s.Allowances + s.Basic};

 foreach (var v in query)
 Console.Write(v.Gross);
 }

Ordering
You can also order the result set in an ascending or descending order. Here is a code
snippet that illustrates how you can do this:

using (PayrollEntitiesvar entities = new PayrollEntities())
 {
 var query = from s in entities.Salaries
 where entities.Salaries.Sum(sal => s.Basic
 + s.Allowances) >= 150000
 select new { Gross = s.Allowances +
 s.Basic };

 foreach (var v in query.OrderByDescending(x=>x.Gross))
 Response.Write("
" + v.Gross);
 }

This is how you can use the orderby operator in your LINQ to Entities query to
order the result set in ascending order of employee names:

using (PayrollEntitiesvar entities = new PayrollEntities())
 {
 ObjectQuery<Employee> employees = entities.Employees;
 IQueryable<Employee> sortedEmployees =
 from emp in employees
 orderby emp.EmployeeName
 select emp;

Working with LINQ to Entities

[156]

 foreach (var emp in sortedEmployees)
 Console.Write(emp.EmployeeName);

 }

Quantifiers
A quantifier operation returns a Boolean value indicative of whether or not one or
more elements in a sequence satisfies a particular condition. Here is the list of the
quantifier operations that can be performed by the standard query operators:

•	 All

•	 Any

•	 Contains

You can use any of the quantifiers such as All, Any, or Contains to search for a
sequence. As an example, the following query returns true or false, depending on
whether all employees who reside in Hyderabad joined the organization in January:

var query = (from emp in entities.Employees
 where emp.EmployeeAddress == "Hyderabad"
 select emp).All(e => e.JoiningDate.Month == 1);

Similarly, you can change the preceding query to return either a true or a false value,
depending on whether any employee in the organization joined in January and
resides in the UK:

var query = (from emp in entities.Employees
 where emp.EmployeeAddress == "UK"
 select emp).Any(e => e.JoiningDate.Month == 1);

Restriction
You can restrict the results of a LINQ to Entities query based on a certain condition.
Doing this requires the where operator. Here is an example that illustrates how you
can use the where operator to restrict the results in your result set to the condition
that you have specified in your query:

var employees =
 from emp in entities.Employees
 where emp.EmployeeAddress == "UK"
 select emp;

When you execute this query, only the names of employees residing in the UK
are listed.

Chapter 6

[157]

Conversion
You can use the conversion operators, such as ToList or ToArray on your LINQ to
Entities query, to convert the result set to a collection of List or Array type. Here is
an example that illustrates how you can use the ToList operator:

var results = (from s in payrollEntities.Salaries
 select s.Employee).ToList();

 foreach (var emp in results)
 {
Console.Write(emp.EmployeeName);
 }

Similarly, you can use the ToArray operator to covert the same result set to a
collection of type Array as shown in the following code snippet:

using (PayrollEntitiesvar payrollEntities = new PayrollEntities())
 {
 ObjectQuery<Salary> salary = payrollEntities.Salaries;
 Array result = (from s in salary
 select s.Employee).ToArray();

 foreach (Employee emp in result)
 Console.Write(emp.EmployeeName);
 }

Element
You can use the First or the Last operator to retrieve the first or last object in a
sequence as follows:

 using (PayrollEntitiesvarentities = new PayrollEntities())
 {
 var query = (from emp in entities.Employees
 where emp.EmployeeAddress == "UK"
 select emp).First();

 Console.Write(query.EmployeeName);
 }

Working with LINQ to Entities

[158]

Set
This is an example that uses the Distinct operator to display the employee names
stored in the Salary table:

var results = (from s in payrollEntities.Salaries
 select s.Employee).Distinct();

 foreach (var emp in results)
 { Console.Write(emp.EmployeeName);
 }

Querying data using LINQ
Let's take a look at how we can use LINQ to query data in our applications.
The following code snippet illustrates how you can use LINQ to display the
contents of an array:

String[] employees = {"Joydip", "Douglas", "Jini", "Piku", "Amal",
 "Rama", "Indronil"};
var employeeNames = from employee in employees select employee;
foreach (var empName in employeeNames)
 Response.Write(empName);

Now, let's discuss how to use LINQ to query a generic list. Consider the following
GenericEmployeeList list:

public List<String> GenericEmployeeList = new List<String>()
{
 "Joydip", "Douglas", "Jini", "Piku",
 "Rama", "Amal", "Indronil"
};

You can use LINQ to query this list as shown in the following code snippet:

IEnumerable<String> employees = from emp in GenericEmployeeList
 select emp;
 foreach (string employee in employees)
 {
 Response.Write(employee);
 }

Chapter 6

[159]

You can use conditions with your LINQ query as well. The following example
shows how:

IEnumerable<String> employees = from emp in GenericEmployeeList
where
emp.Length > 4 select emp;
 foreach (var employee in employees)
 {
 Console.Write(employee);
 }

In this code snippet, we use LINQ to display the employee names more than four
characters in length. The preceding query displays the following output:

Joydip
Douglas
Indronil

Here is another example of how you can use conditional queries with LINQ.
To display the names of employees whose names start with the letter "J",
you can use the following:

IEnumerable<String> employees = from emp in GenericEmployeeList
where
 emp.StartsWith("J")
 select emp;
foreach (String employee in employees)
{
 Console.Write(employee);
}

This code snippet will result in the following employee names being displayed:

Joydip
Jini

As you can see from the preceding output, only those employees whose names start
with the letter "J" are displayed.

Consider the Employee class as follows:

public class Employee
{
 public string EmpCode { get; set;}
 public string EmpName { get; set;}
 public string DeptCode { get; set;}
 public DateTime JoiningDate { get; set;}
 public decimal Salary { get; set;}
}

Working with LINQ to Entities

[160]

The following code snippet illustrates how you can use LINQ to DataSet to retrieve
the details of specific employees from a DataTable instance, which contains a
collection of employees:

DataTablevar empDataTable = new DataTable();
empDataTable.Columns.Add("EmpCode", typeof(String));
empDataTable.Columns.Add("EmpName", typeof(String));
empDataTable.Columns.Add("DeptCode", typeof(String));
empDataTable.Columns.Add("Salary", typeof(Decimal));
empDataTable.Rows.Add("E0001", "Joydip", "D0001",23000);
empDataTable.Rows.Add("E0002", "Douglas", "D0002", 45000);
empDataTable.Rows.Add("E0003", "Sabita", "D0001", 12000);
empDataTable.Rows.Add("E0004", "Piku", "D0003", 13000);
empDataTable.Rows.Add("E0005", "Rama", "D0003", 27500);
empDataTable.Rows.Add("E0006", "Amal", "D0002", 19500);

var empRecords = from row in empDataTable.AsEnumerable()
 where row.Field<decimal>("Salary") > 15000
 select row;

foreach (var emp in empRecords)
Console.Write(emp["EmpCode"].ToString() + "\t" +
emp["EmpName"].ToString() + "\t" + emp["Salary"].ToString());

We will now demonstrate how to use LINQ to query data from a generic list.
This is the code that illustrates how to do this:

List<Employee>var empList = new List<Employee>()
{
 new Employee
 {
 EmpCode = "E0001", EmpName = "Joydip", DeptCode =
 "D0001", Salary = 23000
 },
 new Employee
 {
 EmpCode = "E0002", EmpName = "Douglas", DeptCode =
 "D0003", Salary = 45000
 },
 new Employee
 {
 EmpCode = "E0003", EmpName = "Sabita", DeptCode =
 "D0002",
 Salary = 15000
 }

Chapter 6

[161]

};

var empRecords = from row in empList.AsEnumerable()
 where row.Salary > 15000
 select row;

foreach (var emp in empRecords)
 Console.Write(emp.EmpCode.ToString() + "\t" +
 emp.EmpName.ToString() + "\t" + emp.Salary.ToString());

Required namespaces
You should include the System.Linq namespace if you want to
use LINQ for SQL, LINQ to XML, or LINQ to Objects. For using
lambda expressions, you should include the System.Linq.
Expressions namespace.

Expressions in LINQ to Entities
An expression in LINQ is a piece of code that can be evaluated to one of
the following:

•	 Single value
•	 Object
•	 Method

Expressions will contain one of the following:

•	 A literal
•	 An operator
•	 A method call

The results of LINQ to Entities queries are returned as one of the following:

•	 EDM compatible CLR types
•	 Collection of one or more entity instances
•	 IQueryable instances
•	 IGrouping instances
•	 Anonymous types

To use expressions in LINQ to Entities, you need to include the
System.Linq.Expressions namespace in your programs.

Working with LINQ to Entities

[162]

This is an example that illustrates how an expression can be used:

IQueryable<string> employeeContact = from emp in employees
where emp.City = "Hyderabad" select emp.EmpName;

In the preceding example, the employee is an instance of the Employee class. It is a
business object that relates to the entity called Employee. The mentioned query will
return the names of all employees who live in Hyderabad.

Constant expressions
Constant expressions are used to evaluate constant values. These expressions are
evaluated to constant command-tree expressions directly. Here is an example that
illustrates how constant expressions are evaluated:

var salaryInfos =
 from s in payrollContext.Salaries
 where s.Basic >= (5000 + 1000)
 select s.EmployeeID;

 foreach (var empID in salaryInfos)
 {
 Console.WriteLine(empID);
 }

The preceding query lists the IDs of employees having Basic greater than or equal to
6000. Note that the value 1000 in the mentioned query represents a constant.

Comparison expressions
A comparison expression is used to check whether a constant, a property, or a result
from a method call is equal to, not equal to, greater than, or less than another value.
Refer to the following code snippet that illustrates how such expressions can be used:

using (PayrollEntitiesvar payrollContext = new PayrollEntities())
 {
 var salaryInfos =
 from s in payrollContext.Salaries
 where s.Basic <= 15000
 select s.EmployeeID;

 foreach (var empID in salaryInfos)
 {

Chapter 6

[163]

 Console.WriteLine(empID);
 }

 }

The mentioned query will list the employee IDs of employees whose Basic is less
than or equal to 15000.

The following code snippet illustrates how you can use comparison expressions to
display the names of the employees who work in the HR department:

PayrollEntitiesvar payrollEntities = new
PayrollModel.PayrollEntities();
 var result = from emp in payrollEntities.Employee where
 emp.DepartmentMaster.DepartmentName == "HR" select emp;

 foreach (Employee e in result)
 {
 Concole.Write(e.EmployeeName);
 }

The following example shows how you can display the names of all employees who
have joined the organization on or after a specified date:

using (PayrollEntities var payrollContext = new PayrollEntities())
 {

 DateTimevar joiningDate =
 new DateTime(2004, 1, 1);
 ObjectQuery<Employee> employee =
 payrollEntities.Employee;
 IQueryable<string> employeeInfo =
 from emp in Employee
 where emp.JoiningDate >= joiningDate
 select emp.EmpName;

 foreach (String empName in employeeInfo)
 {
 Console.WriteLine(empID);
 }
 }

The preceding query will list the names of all employees who have joined the
organization on or after January 1, 2004.

Working with LINQ to Entities

[164]

Initialization expressions
Initialization expressions are used to initialize a new instance. The following code
snippet illustrates how you can use initialization expressions to compose and
initialize a new instance:

using (PayrollEntities var payrollContext = new PayrollEntities())
 {

 DateTimevar joiningDate =
 new DateTime(2004, 1, 1);

 ObjectQuery<Employee> employee =
 payrollContext.Employee;

 var employeeInfo =
 from emp in Employees
 where emp.JoiningDate >= joiningDate
 select new {emp.EmpName, emp.JoiningDate};

 foreach (var e in employeeInfo)
 {
 Console.WriteLine("Name:
 "+e.EmpName+"\t"+"Joining Date:
 "+e.JoiningDate);
 }
 }

When you execute the preceding query, the names and joining dates of the employees
who have joined the organization on or after January 1, 2004 will be listed.

A query in LINQ is a generic query. Namely, it is of type
ObjectQuery<T>, a class that implements the IQueryable and
IEnumerable<T> interfaces. When the query is executed, that
is, when you enumerate or iterate through the collection a generic
ObjectResult, an object of type ObjectResult<T> is returned.
Actually, ObjectQuery represents the query prior to its execution.
ObjectResult, on the other hand, represents the same after the
query has been executed.

Chapter 6

[165]

Null comparisons
Consider a column called Tax in the Employee table. The value for this column
will be null for employees having no tax or will display the taxable amount to be
deducted otherwise. This is a T-SQL statement that illustrates how you perform
null comparisons:

SELECT EmpName from Employee where Tax is null

The preceding query lists the names of all employees who don't fall into the tax
bracket. In other words, their salary is not taxable.

The same can be done in LINQ as shown here:

var result = from emp in payrollContext.Employee where emp.Tax ==
null select emp.EmpName;

Navigation properties
Navigation properties enable you to navigate from one end of an entity to another.
In essence, you can use them to locate entities at the end of an association.

Consider the following custom entity class called EmployeeContact:

public class EmployeeContact
{
 private String name;
 private String address;

 public string Name
 {

 get;set;
 }

 public string Address
 {
 get;set;
 }
}

Working with LINQ to Entities

[166]

We will now see how to use navigation properties to compose a collection of
instances of this class using LINQ to Entities. Here is the code:

PayrollEntitiesvar payrollEntities = new
PayrollModel.PayrollEntities();
 IQueryable<EmployeeContact> query =
 payrollEntities.Employee
 .Where(emp => emp.JoiningDate >= new DateTime(2004,01,01))
 .Select(emp => new EmployeeContact { Name =
 emp.EmployeeName, Address = emp.EmployeeAddress });

Note that these extension methods are just a different syntax for the mentioned
LINQ syntax. What did we do? We created an instance of our DbContext called
PayrollEntities, and then we used a query to retrieve the names and addresses
of those employees who have joined the organization on or after January 1, 2004.
We composed instances of the EmployeeContact entity with the results retrieved.

We can also use the Load method to load-related entities.

Now that our IQueryable instance contains a collection of EmployeeContact
instances, we can iterate through the collection of EmployeeContact instances
and display the values as shown:

 foreach (EmployeeContact empContact in query)
 {
 Console.Write(empContact.Name+" "+empContact.Address);
 }

Immediate and deferred query execution
Once a LINQ query is created and executed, it is converted into a command tree. This
is a representation of the query that is compatible with Entity Framework. Note that
the LINQ to Entities queries are executed at the time the results are iterated. Such an
execution is also referred to as deferred execution. The query is executed each time
you iterate over the query variable inside a loop. On the contrary, immediate execution
occurs when the queries return a single value computed or otherwise. Examples of
such queries are when Min, Max, Count, and Average are used to compute results. You
can also force immediate execution of a query by invoking the ToList or ToArray
methods on a query or query instance.

Chapter 6

[167]

Here are two methods. The first illustrates deferred execution, and the second one
illustrates immediate execution:

public static void DeferredExecution()
 {
 int[] intArray = new int[] { 1, 2, 3, 4, 5};
 int index = 0;
 var query = from i in intArray select ++index;
 Console.WriteLine("Illustrating Immediate
 Execution\n");
 foreach (var number in query)
 Console.WriteLine("The value of number is: {0}. The
 value of index is: {1}", number, index);
 }

public static void ImmediateExecution()
 {
 int[] intArray = new int[] { 1, 2, 3, 4, 5 };
 int index = 0;
 var query = (from i in intArray select
 ++index).ToList();

 Console.WriteLine("\n\nIllustrating Deferred
 Execution\n");

 foreach (var number in query)
 Console.WriteLine("The value of number is: {0}. The
 value of index is: {1}", number, index);
 }

The first example is actually deferred execution and the second is immediate. When
you call ToList() on an IQueryable, it immediately executes it. The first example
is deferred as it is not executed until the iteration starts in the loop. In the second
example, by the time the for loop starts, the query is already executed. It is executed
when you called ToList().

The following code will invoke both these methods one by one as shown in the
following code snippet:

ImmediateExecution();
DeferredExecution();
Console.WriteLine("\nPress any key...");
Console.Read();

Working with LINQ to Entities

[168]

When you execute the program, the output looks like the following screenshot:

When calling without the ToList() elements of the resulting IEnumerable are
evaluated on the fly, right inside the foreach loop, hence the execution is immediate.
Therefore, the index will be incremented gradually during the foreach loop, as the
elements are iterated. If, for example, you were to break out of that loop after the
first element, the other four will not even be evaluated and the index will remain 1.
When calling with ToList(), however, the ToList method forces the LINQ query
to be executed first, before the foreach loop, caching the results in the returned list.
Therefore, the index will be bumped up to 5 before the foreach loop. Then, when
foreach is called, it will simply loop through the list, but the index is no longer
touched. It is already 5.

Retrieving entity data from the Security database
In this section, we will explore how we can retrieve entity data from the Security
database using LINQ to Entities.

The following code snippet illustrates how you can query the list of user IDs from
the database table User using LINQ to Entities:

using (SecurityDBEntitiesvar context = new SecurityDBEntities())
 {
 ObjectContext objectContext =
 ((IObjectContextAdapter)context).ObjectContext;

Chapter 6

[169]

 ObjectSet<User> query =
 objectContext.CreateObjectSet<User>("Users");

 foreach (User result in query)
 Console.Write("User ID: "+result.UserID);

 }

Refer to the following code snippet. Note that the ObjectSet class implements
the IObjectSet interface. Now, in order to convert DbSet to ObjectContext,
we make use of the IObjectConverterAdapter interface and cast the DbSet
instance to the ObjectContext instance called objectContext. Now, we can
pass the objectContext instance as an ObjectQuery type and query data.
It should be noted that the ObjectContext class contains a set of properties
of type ObjectQuery that represent queries on specific entity sets.

The following code snippet shows how you can retrieve the
UserAuthenticationTypeID value for the UserAuthenticationType windows:

using (SecurityDBEntitiesvar context = new SecurityDBEntities())
 {
 ObjectContext objectContext =
 ((IObjectContextAdapter)context).ObjectContext;
 ObjectSet<UserAuthenticationType> query =
 objectContext.CreateObjectSet
 <UserAuthenticationType>("User
 AuthenticationTypes");

 var data = from x in query where
 x.UserAuthenticationTypeDescription == "Windows"
 select x.UserAuthenticationTypeID;
 }

The CreateObjectSet<T> method returns ObjectSet<T> that contains a collection
of generic objects, with the ability to manipulate the objects in this collection. The
following code snippet illustrates how a generic repository class can be implemented
that supports .edmx files as well as DbContext:

public abstract class GenericEntityFrameworkRepository<TClass>
 where TClass : class, new()
{
 private readonly ObjectSet<TClass> objectSet;

 protected GenericEntityFrameworkRepository(IObjectContextAdapter
 context)
 {

Working with LINQ to Entities

[170]

 objectSet = context.ObjectContext.CreateObjectSet<TClass>();

 }

 protected GenericEntityFrameworkRepository(ObjectContext context)
 {
 objectSet = context.CreateObjectSet<TClass>();
 }

 public ObjectSet<TClass> GetObjectSet()
 {
 return objectSet;
 }
}

Summary
In this chapter, we discussed LINQ to Entities and learned how it can be used
to query data against the EDM. We looked at the standard query operators and
expressions in LINQ and how they can be used. We also discussed two of the most
important features in LINQ, namely, immediate and deferred query execution and
compiled queries.

In the next chapter, we will explore the Object Services layer in Entity Framework
and discuss how it can be used in our applications. We will also see how we can use
LINQ with Object Services to query data in our applications.

[171]

Working with the Object
Services Layer

We explored multiple features of Entity Framework in the last few chapters.
We had a look at the Object Service Layer and the consolidated programming
model it presents in the form of strongly-typed objects. With this, you can represent
entities as object instances of data classes mapping to the entity types in the model.
The Object Service Layer can keep track of changes made to the objects in-memory
and update the database accordingly. The results of the execution of a query in the
EDM are available as objects—this enables you to have the option to choose either
from EntityClient or Object Services in your application.

In this chapter, we will explore Object Services and how they can be used to perform
CRUD operations against the Entity Data Model. Object Services provide services such
as identity resolution, change tracking, object persistency, and also update processing.
The Object Services Layer internally uses an ObjectQuery object for query processing.
To use Object Services, you should include the System.Data.Objects and System.
Data.Objects.DataClasses namespaces.

In this chapter, we will discuss the following:

•	 An introduction to Object Services
•	 Understanding the code-first, model-first, and database-first approaches to

domain design
•	 Using Entity Framework 7
•	 Using Object Services to perform CRUD operations
•	 Handling data concurrency conflicts using ObjectContext
•	 Inheritance in the EDM
•	 State management, identity management, and relationship management

Working with the Object Services Layer

[172]

•	 Reading objects from the Security database
•	 Inserting objects into the Security database
•	 Editing objects in the Security database
•	 Deleting objects in the Security database

What are Object Services?
Object Services enables you to work with entities such as in-memory objects. In-
memory objects are those that reside in the memory of your system—you can persist
them to a persistent storage device if you need to. The Object Services Layer strives
to eliminate the impedance mismatch that exists between the relational and the
programming models. You can use Object Services for change tracking, data binding
objects to data controls, inheritance, lazy loading, relationship navigation, and
handling concurrency conflicts. Object Services support both LINQ and Entity SQL
queries. The classes of the Object Services Layer are contained in the System.Data.
Objects and System.Data.Objects.DataClasses namespaces. The ObjectContext
class is the core of the Object Services Layer. The Object Services Layer processes the
LINQ to Entities and ObjectQuery queries and then materializes the query results
as objects. It also keeps track of the state information of the objects, the relationships
between the objects, and the metadata using the ObjectContext class.

The Object Services Layer fits in between the Entity Client Provider and the
Query layer.

Entity Data Model

Conceptual Model

Mapping Layer

Storage Model

LINQ to Entities Entity SQL

Object Services

Entity Client Provider

Database

ADO.NET Provider

Chapter 7

[173]

The ObjectContext class encapsulates the following:

•	 An EntityConnection instance
•	 A MetadataWorkspace instance
•	 An instance of ObjectStateManager

While the EntityConnection instance is responsible for connecting to the database, the
instance of MetadataWorkspace contains the metadata information that describes the
EDM. The ObjectContext class also encapsulates an ObjectStateManager instance
that enables you to track an object's state while a CRUD operation is performed.

The ObjectContext class is the gateway to the EDM. You use it to connect to
the model and perform CRUD operations. You can use it to read data using the
CreateQuery method, add entities using the AddObject method, delete entities
using the DeleteObject method, persist the changes to the database using the
Save method, and attach or detach entities to and from the ObjectContext class
using the Attach and Detach methods respectively. When objects are attached
to the object context, their state is tracked and managed by the object context.
On the contrary, objects that have been detached from the object context are no
longer tracked by the object context and such objects can be cleaned up at runtime.

You use the SubmitChanges method of the data context to submit the changes to
the entities in memory back to the database.

SubmitChanges works with LINQ to SQL and belongs to the
DataContext class, while SaveChanges is used on EF and
is a method of the ObjectContext class. The former starts a
transaction and rolls back if an exception has occurred.

Application

Objects LINQ Query SubmitChanges()

SQL Query

Database

Rows Stored procedures

Entity Framework

Entity Data Model

ADO.NET Provider

Working with the Object Services Layer

[174]

You should use the EntityClient when you would like to use
dynamic queries or raw, unmapped SQL. This would provide you
with a way to use the traditional ADO.NET style of interacting with
your databases to perform CRUD operations. Use LINQ to Entities
when you would like to use strongly-typed queries. You should
use Object Services when you would like to explore the powerful
features of the Object Services Layer. This might include tracking and
identity resolution, efficient ways to managing transactions, object
serialization, and queries that are not checked at compile time.

Features at a glance
Here are some of the striking features of Object Services at a quick glance:

•	 Querying data as objects
•	 Materializing objects and managing objects
•	 Support for change tracking and identity resolution
•	 Data merging
•	 Object serialization and data binding
•	 Transaction management
•	 Support for entity persistence
•	 Querying data with LINQ or Entity SQL
•	 Support for state management
•	 Support for entity inheritance
•	 Support for deferred execution
•	 Future queries

The SecurityDbEntity's DbContext class
Note that ObjectContext was replaced by DbContext in Entity Framework 4.1.
DbContext is an adapter or a wrapper on top of ObjectContext. To retrieve the
ObjectContext instance from DbContext, you would need to cast the DbContext
instance to an IObjectContextAdapter interface reference. The following code
snippet illustrates how you can retrieve the ObjectContext instance from DbContext:

ObjectContext objectContext =
((IObjectContextAdapter)databaseContextObject).ObjectContext;

Chapter 7

[175]

The following code listing shows what the SecurityDBEntiti class's data context
class looks like:

public partial class SecurityDBEntities : DbContext
 {
 public SecurityDBEntities()
 : base("name=SecurityDBEntities")
 {

 }

 protected override void OnModelCreating(DbModelBuilder
 modelBuilder)
 {
 throw new UnintentionalCodeFirstException();
 }

 public DbSet<Control> Controls { get; set; }

 public DbSet<ControlType> ControlTypes { get; set; }

 public DbSet<Role> Roles { get; set; }

 public DbSet<User> Users { get; set; }

 public DbSet<UserAuthentication> UserAuthentications
 { get; set; }

 public DbSet<UserAuthenticationType>
 UserAuthenticationTypes { get; set; }

 public DbSet<UserLoginHistory> UserLoginHistories
 { get; set; }

 public DbSet<UserRole> UserRoles { get; set; }
 }

ObjectContext is only needed if you would like to implement a model-first and
database-first approach. On the contrary, if you are using Entity Framework 4.1
and above, you should use DbContext.

Note that while the ADO.NET POCO Entity Generator is based
on the ObjectContext class' API, the ADO.NET DbContext
Generator is based on the DbContext class' API.

Working with the Object Services Layer

[176]

Querying data as in-memory objects
Object Services are used to work with your entities as in-memory objects, or a
collection of in-memory objects. The Object Services Layer internally uses an
ObjectQuery object for query processing and supports querying data using both
Entity SQL and LINQ. The ObjectQuery class implements the IQueryable<T>
and IEnumerable<T> generic interfaces.

Queries are created using the ObjectQuery class that internally contains a list of
query builder methods. Upon execution, the ObjectQuery instance returns the
result set in terms of an instance of ObjectResult.

Note that the query you executed using ObjectQuery is
executed late. That is, it is executed only after you enumerate
the ObjectResult instance. This deferred execution is a
great feature of the Object Services Layer.

The basic reason for using Object Services is that you can program against objects,
such as storing and retrieving objects or collections of objects, to and from any data
store while writing much less code.

Using Entity Framework 7
Entity Framework 7 is more lightweight and better in performance compared to its
earlier counterparts. With Entity Framework 7, all models will be represented through
code—the EDMX approach will be removed and there is only a single code-based
approach. This approach is also known as the code-first only approach. Code-based
modeling is less repetitive and simple to use, test, manage, and maintain.

With Entity Framework 7, you have excellent support for no-SQL databases and
in-memory data for unit testing.

The following code snippet illustrates how you can write a unit test method for
when you are using Entity Framework 7:

[TestMethod]
public void AddEmployeeTest(Employee emp)
{
var options = new DbContextOptions()
.UseInMemoryStore();
using (var db = new PayrollContext(options))
{

Chapter 7

[177]

//Code to add an employee instance to the data store
//Assert the results
}
}

Entity Framework 7 now supports the following providers:

•	 SQL Server
•	 SQLite
•	 Azure Table Storage
•	 Redis
•	 In-memory (for unit testing)

Performing CRUD operations on objects
In this section, we will discuss how you can use Object Services to add, modify, and
delete an object within ObjectContext.

Adding an object to the ObjectContext class requires the use of the AddObject
method. It accepts the entity set name and entity instance as parameters and adds
the object passed to it to the ObjectContext class. Once you have added an object
to the ObjectContext class, you can call SaveChanges to persist the changes to
the database.

Here is an example that shows how you can add an object to the ObjectContext
class and then call the SaveChanges method to persist the changes to the database:

SecurityDBEntities dbContext = new SecurityDBEntities();

 using (ObjectContext objectContext =
 ((IObjectContextAdapter)dbContext).ObjectContext)
 {
 UserLoginHistoryvar userLoginHistory = new
 UserLoginHistory();

 userLoginHistory.UserID = 1;
 userLoginHistory.UserLoginDate = DateTime.Now;

 objectContext.AddObject("UserLoginHistory",
 userLoginHistory);
 objectContext.SaveChanges();
 }

Working with the Object Services Layer

[178]

In the preceding code example, a new record is added in the UserLoginHistory
table. Note that you need to call the SaveChanges method of the ObjectContext
class to apply the changes.

Here is an example that shows how you can use ObjectContext and LINQ to
update a record in the database:

using (ObjectContext ctx =
((IObjectContextAdapter)dbContext).ObjectContext)
 {
 var query = (from u in
 ctx.CreateQuery<UserLoginHistory>
 ("UserLoginHistory")
 select u).Where(u => u.UserID == 8);
 foreach (var userLoginHistory in query)
 {
 userLoginHistory.UserLoginDate = DateTime.Now;
 }
 ctx.SaveChanges();
 }

To delete the record you just inserted, use the DeleteObject method of the
ObjectContext class as shown in the following code snippet:

using (ObjectContext ctx =
((IObjectContextAdapter)dbContext).ObjectContext)
 {
 var userLoginHistory = (from u in
 ctx.CreateQuery<UserLoginHistory>
 ("UserLoginHistory")
 select u).Where(u => u.UserID ==
 8).FirstOrDefault();

 ctx.DeleteObject(userLoginHistory);
 ctx.SaveChanges();
 }

Attaching and detaching objects to and
from ObjectContext
You can use the Attach or Detach methods of the ObjectContext class to attach
or detach objects. It should be noted that Attach will attach the entire object graph.
The method cannot determine which objects are new and which already exist in
ObjectContext. Note that when you execute a query on ObjectContext, the objects
that are returned as a result of the query are attached in ObjectContext.

Chapter 7

[179]

You can attach an object to ObjectContext by calling any of the following methods
on ObjectContext:

•	 Attach

•	 AddObject

•	 AttachTo

•	 ApplyPropertyChanges

But what does Attach and Detach mean here? You use Attach to attach an object
to the context. You should use Attach when the entity already exists in the database
and you want the context to know about it without performing a query to locate the
entity. When you attach an entity to ObjectContext using the Attach method, it sets
EntityState of the object being attached to the Unchanged state. In other words,
these objects switch to a unmodified state in ObjectContext.

On the contrary, if the entity in question is new and is not present in the context,
and you also want to insert data into your database, then you should use Add.
Here is how you can use the Attach method in the ObjectContext class to attach
an object:

ctx.Attach(userLoginHistory);

Now, the User object and UserLoginHistory object have a relationship between
them. If you were to attach the User object to the UserLoginHistory object, you
would use the following code:

context.Attach(detachedUser);
detachedUser.UserLoginHistory.Add(userLoginHistory);

You can also use the ObjectContext class to attach objects, even objects that were
detached from ObjectContext earlier. When you no longer need an object to be
referenced in your ObjectContext class, you can detach it. Note that detached
objects are de-referenced. In other words, they are not referenced by ObjectContext
anymore. So, you can detach objects when they are no longer needed to facilitate
garbage collection. You can detach objects from the ObjectContext class by calling
the Detach method as shown:

ctx.Detach(ctx.UserLoginHistory.First());

You can also attach a detached instance. Here is how you can attach a detached
user object:

context.Attach(detachedUser);

Working with the Object Services Layer

[180]

The AttachTo method is used to attach an object, or an object graph, into the object
context in an unchanged state. You can use this method to attach entity objects, or
graphs of entity objects, if the object being added is null, a single object, or an object
that is a part of the object graph. Here is how this method can be used in code:

context.AttachTo("User",userObject);

When you execute a query inside an object context, the objects that are
returned by the query are all attached to the object context in use.

Serializing and deserializing entity
instances
Serialization is defined as the process of converting an object into a stream of bytes
(as a memory stream) so that it can be persisted in the memory or to a permanent
storage device such as a database or a file. You can serialize or deserialize an entity
instance using ObjectContext. To do this, you need to call the Serialize or the
Deserialize method of the BinaryFormatter class as shown in the following
code snippets:

public static void Serialize(sString fileName, oObject obj)
 {
 BinaryFormatter var binaryFormatter = new
 BinaryFormatter();
 FileStreamvar fileStream = new
 FileStream(fileName,FileMode.Create);
 try
 {
 binaryFormatter.Serialize(fileStream, obj);
 }

 catch (SerializationException ex)
 {
 throw new ApplicationException("The object graph
 could not be serialized", ex);
 }
 finally
 {
 fileStream.Close();
 }
 }

Chapter 7

[181]

The Serialize method just shown accepts a file name and the object to be serialized
as parameters, then serializes it using a BinaryFormatter instance, and then stores
the serialized instance of the file.

Here is the DeSerialize method that accepts the name of the file where the
serialized instance is stored and returns the deserialized instance back:

 public static Object DeSerialize(String fileName)
 {
 BinaryFormatter var binaryFormatter = new
 BinaryFormatter();

 FileStreamvar fileStream = new FileStream(fileName,
 FileMode.Open);

 try
 {
 fileStream.Seek(0, SeekOrigin.Begin);
 return binaryFormatter.Deserialize(fileStream);
 }

 catch (SerializationException ex)
 {
 throw new ApplicationException("Serialization
 Exception: " + ex.Message);
 }

 finally
 {
 fileStream.Close();
 }
 }

Let's assume that the serialize and deserialize methods have been moved to a
Utilities class. The following code shows how you can use the Serialize
and DeSerialize methods we defined earlier:

void Serialize()
 {
 SecurityDBEntitiesvar dbContext = new
 SecurityDBEntities();

 using (ObjectContext objectContext =
 ((IObjectContextAdapter)dbContext).ObjectContext)

Working with the Object Services Layer

[182]

 {
 UserLoginHistory userLoginHistory = null;
 ObjectQuery<UserLoginHistory> query = null;
 query =
 objectContext.CreateQuery<UserLoginHistory>
 (@"SELECT VALUE u
 FROM UserLoginHistory AS u");
 userLoginHistory = query.Where(ulh => ulh.UserID
 == 1).First();
 Utilities.Serialize("C:\\Test\\Test.txt",
 userLoginHistory);
 }
 }

Note that the Utilities class contains the Serialize and the DeSerialize
methods defined earlier. The preceding code serializes the instance of the first
userLoginHistory of the UserLoginHistory table and stores the serialized
instance in the Test.txt file. Now, to deserialize the instance and get back
the original instance, you need to call the DeSerialize method as shown:

void DeSerialize()
 {
 UserLoginHistory userLoginHistory =
 (UserLoginHistory)Utilities.DeSerialize
 ("C:\\Test\\Test.txt");
 Response.Write("User ID: " +
 userLoginHistory.UserID.ToString());
 Response.Write("
User Login ID: " +
 userLoginHistory.UserLoginID.ToString());
 Response.Write("
User Login Date: " +
 userLoginHistory.UserLoginDate.ToString());
 }

Change tracking and identity resolution
using ObjectContext
Change tracking in Entity Framework is a feature that enables you to detect and
resolve conflicts that arise out of concurrent data updates on a particular entity.
Such scenarios are commonly known as concurrency conflicts.

Two modes used to handle data concurrencies in a multiuser environment are:

•	 Optimistic
•	 Pessimistic

Chapter 7

[183]

In the optimistic mode, the record is read but not locked. You need to check whether
a record to be saved has already been modified. In essence, you need to track the
changes in the data before you perform any changes.

In the pessimistic mode, the record being modified is locked from other users until
the lock on the record is released. Therefore, pessimistic concurrency is not a good
choice, especially when you have a large number of users accessing the application
at the same point in time. For further details, please refer to http://www.asp.net/
mvc/tutorials/getting-started-with-ef-using-mvc/handling-concurrency-
with-the-entity-framework-in-an-asp-net-mvc-application.

By default, Entity Framework follows the optimistic concurrency model. When the
Object Services Layer saves the changes in an object to the database due to a call to
its SaveChanges method, any checks for concurrency are bypassed. In other words,
it does not check whether there are any concurrency conflicts in the database.

You can, however, set the ConcurrencyMode attribute of an entity property in
the Conceptual Layer to enable the Object Services Layer to check for concurrency
violations when it tries to save changes to the data back to the database. Here is
how you can set the ConcurrencyMode attribute of an entity property:

<Property Name="FirstName" Type="String" Nullable="false"
MaxLength="50" Unicode="false" ConcurrencyMode="Fixed"/>

If the ConcurrencyMode attribute is set for an entity in the EDM, the
Object Services Layer will always check for changes in the database
before it saves the data in the database. When any conflict occurs, an
OptimisticConcurrencyException exception will be thrown.

Understanding the code-first, model-first,
and database-first approaches to domain
design
There are three approaches to developing data-driven applications using Entity
Framework. These are:

•	 Code-first: In this approach, you would create your POCO classes first and
then generate the database using these POCO classes

•	 Model-first: In this approach, you would create your model first using the
ADO.NET Entity Data Model Designer and then generate your database
from this model

http://www.asp.net/mvc/tutorials/getting-started-with-ef-using-mvc/handling-concurrency-with-the-entity-framework-in-an-asp-net-mvc-application
http://www.asp.net/mvc/tutorials/getting-started-with-ef-using-mvc/handling-concurrency-with-the-entity-framework-in-an-asp-net-mvc-application
http://www.asp.net/mvc/tutorials/getting-started-with-ef-using-mvc/handling-concurrency-with-the-entity-framework-in-an-asp-net-mvc-application

Working with the Object Services Layer

[184]

•	 Database-first: In this approach, you would create your database first
and then generate your model using the ADO.NET Entity Data Model
Designer from this database

Using the code-first approach
In this approach, you would create your POCO classes first and then generate the
database using these classes. Let's create a POCO class as shown:

public class Customer
 {
 public int CustomerID { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 }

The context class should be derived from DbContext class as shown here:

public class CustomerContext : DbContext
 {
 public CustomerContext() : base()
 {

 }
 public DbSet<Customer> Customers { get; set; }
 }

To insert data using the context class you have just created, write this code:

using (CustomerContextvar ctx = new CustomerContext())
 {
 var customer = new Customer()
 { CustomerID = 1, FirstName = "Joydip", LastName
 = "Kanjilal"};
 ctx.Customers.Add(customer);
 ctx.SaveChanges();
 }

When executed, a new database would automatically be created with a Customers
table inside it and the above record would be inserted into the database table.

Chapter 7

[185]

To explicitly set a property to be a primary key of a particular entity, you
can use the HasKey method as shown in the following code example:

ctx.Entity<Vehicle>().HasKey(t => t.VehicleId);

If you would like to define a composite key, here is how you would
specify it using the HasKey method:

ctx.Entity<Department>().HasKey(t => new {
t.DepartmentID, t.Name });

Using the model-first approach
In the model-first approach, you would create entities, their relationships, and
inheritance hierarchies using the EDM Designer and then generate the database
based on the model created.

You would need to specify Empty model when prompted in the Entity Data
Model Wizard dialog as you would be creating a model first, which would be
used to generate the database:

Working with the Object Services Layer

[186]

You would typically use the EDM Design to generate your object model. Here's how
a typical model would look like in the designer view:

Now that your model is complete, you would need to generate the database using
this model for data persistence and retrieval using Entity Framework API. To do this,
you need to right-click on the design surface in the EDM Designer and then click on
the Generate Database from Model… option as shown in the next screenshot:

Chapter 7

[187]

Since the database doesn't exist, you will be prompted to create a new one. Click Yes
and the new database will be generated from your model:

Working with the Object Services Layer

[188]

Using the database-first approach
This is the default strategy and the one that is most commonly used—you'll need to
create your database first and then generate your model from the database that you
have created. We already discussed this strategy earlier so we will skip a discussion
on this here.

When you inherit from the EntityObject class to create your own
custom entity types, ensure that the class and property names of the
custom entity class match that of the entity type names and property
names of the entity in the CSDL. The custom entity class should also
contain a property for each property of the entity type defined in the
Conceptual Schema Definition Language (CSDL).

Inheritance in Entity Framework
Inheritance is a property of object-oriented programming that enables you to extend
new classes from existing ones and provide additional functionality to them. There
are scenarios when the number of entities in the database does not match exactly
with the number of the entities we need in the object model. We may need some
entities that do not have any corresponding table in the database. To cater to this
demand, Entity Framework provides support for entity inheritance. You can create
new entities by deriving from existing entities or create altogether new entities and
then define the relationship between them in your object model.

Entity Framework supports the following types of inheritance:

•	 Table-per-Hierarchy: This is the default inheritance mapping strategy used
by Entity Framework, and uses one database table for the entire inheritance
chain and a discriminator column to distinguish between the classes in
the inheritance hierarchy. In essence, this concept uses polymorphism and
inheritance to denormalize the relational database. The major advantage of
this approach is its simplicity and performance—you are not constrained to
creating complex joins. The main disadvantage of the Table-per-Hierarchy
strategy is that the denormalized schemas can become an overhead after a
period of time.

•	 Table-per-Type: This uses one table per class, that is, each of the classes would
have a corresponding persistence database table. The main advantage of the
Table-per-Type (TPT) strategy is that the SQL schema is normalized and the
schema evolution and integrity constraint definition is seamless. However,
performance in the TPT strategy is not so good, primarily because of the need
for too many joins while executing complex operations.

Chapter 7

[189]

•	 Table-per-Concrete Type: This uses one table for each non-abstract or
concrete class, but not for the abstract class. You can use Table-per-Concrete
Type (TPC) if polymorphic associations are not needed. If changes to the
base class in the hierarchy are unlikely, TPC is a good choice.

Table-per-Hierarchy
To implement Table per Hierarchy (TPH), or Single Table Inheritance, simply inherit
a new class from your existing entity class and add the properties you need. In this
example, we will use the code-first approach.

We will first implement the object model with the code-first approach. Here are the
POCO classes in our model:

public abstract class Vehicle
 {
 public int VehicleId { get; set; }
 public string Model { get; set; }
 public DateTime Year { get; set; }
 }
 public class Car : Vehicle
 {
 public Int32 ushort Wheels { get; set; }
 public string Color { get; set; }
 }
 public class Bike : Vehicle
 {
 public Int32 ushort Wheels { get; set; }
 public string Color { get; set; }
 }

The VehicleContext class given next is our data context that extends the DbContext
class and contains the Vehicles property:

public class VehicleContext : DbContext
 {
 public DbSet<Vehicle> Vehicles { get; set; }
 }

You can now use the following code to add a new car:

using (var ctx = new VehicleContext())
 {
 Carvar car = new Car() { Color="Red", Model =
 "Indica", VehicleId = 759, Wheels = 4, Year = 2004

Working with the Object Services Layer

[190]

 };
 ctx.Vehicles.Add(car);
 ctx.SaveChanges();
 }

To add a new bike, you can use the following code:

using (VehicleContextvar ctx = new VehicleContext())
 {
 var bike = new Bike() { Color = "Red", Model =
 "Indica", VehicleId = 759, Wheels = 2, Year = 2004
 };
 ctx.Vehicles.Add(bike);
 ctx.SaveChanges();
 }

Table-per-Type
In this kind of inheritance, every type or entity is represented as a table in the
database. So, all types are mapped to individual tables. The derived type has an
associated BaseType class from which it is derived. It is not, however, associated
to any EntitySet in the EDM. In other words, in the TPT inheritance model, you
define inheritance relationships in the EDM and store the data pertaining to each
of these entities using their corresponding tables in the database. Let's implement
TPT inheritance using the code-first approach.

If we follow the code-first strategy, Entity Framework would first create a table
for the base type and then create individual tables for each of the sub types in the
hierarchy. We would need to override the OnModelCreating method of DbContext
and write the following code:

protected override void OnModelCreating(DbModelBuilder
modelBuilder)
 {
 modelBuilder.Entity<Car>().ToTable("Cars");
 modelBuilder.Entity<Bike>().ToTable("Bikes");
 base.OnModelCreating(modelBuilder);
 }

Table-per-Concrete Type
In the TPC inheritance model, each table in our database represents the entity in its
entirety. In essence, the individual tables contain the complete information of the
entity. In TPC, we use one table for each non-abstract class.

Chapter 7

[191]

The following VehicleMappingContext class can be used to map the Car and Bike
classes to the Vehicle abstract class and perform CRUD operations:

public class VehicleMappingContext : DbContext
 {
 public DbSet<Vehicle> Vehicles { get; set; }

 protected override void OnModelCreating(DbModelBuilder
 modelBuilder)
 {
 modelBuilder.Entity<Car>().Map(m =>
 {
 m.MapInheritedProperties();
 m.ToTable("Cars");
 });

 modelBuilder.Entity<Bike>().Map(m =>
 {
 m.MapInheritedProperties();
 m.ToTable("Bikes");
 });
 }
 }

The EntityMappingConfiguration class is used for inheritance
mapping when using the code-first strategy. Here is what the class
looks like:

namespace
System.Data.Entity.ModelConfiguration.Configuration.
Mapping

{

 public class EntityMappingConfiguration<TEntityType>
 where TEntityType : class

 {

 public ValueConditionConfiguration
 Requires(string discriminator);

 public void ToTable(string tableName);

 public void MapInheritedProperties();

 }

}

Working with the Object Services Layer

[192]

Implementing complex types in the EDM
A complex type can contain zero or more properties. To create a complex type,
right-click on the design view mode of your EDM and create a new entity. Then,
specify the properties you require. Here is how the complex type Address looks
in the designer view:

And here is how the complex type Address is represented in the EDM:

<ComplexType Name="Address">
 <Property Name="Street" Type="String" />
 <Property Name="City" Type="String" />
 <Property Name="PinCode" Type="String" />
 <Property Name="Country" Type="String" />
 <Property Name="Phone" Type="String" />
</ComplexType>

An entity, such as Employee, can then refer to this complex type in our EDM as shown:

<EntityType Name="Employee">
 <Key>
 <PropertyRef Name="EmployeeID" />
 </Key>
 <Property Name="EmployeeID" Type="Int32"
 Nullable="false" />
 <Property Name="FirstName" Type="String"
 Nullable="false" MaxLength="50" Unicode="false" />
 <Property Name="LastName" Type="String" Nullable="false"
 MaxLength="50" Unicode="false" />

Chapter 7

[193]

 <Property Name="Address" Type="PayrollModel.Address"
 Nullable="false" MaxLength="50" Unicode="false" />
 <Property Name="Phone" Type="String" Nullable="false"
 MaxLength="50" Unicode="false" />
 <Property Name="JoiningDate" Type="DateTime"
 Nullable="false" />
 <Property Name="LeavingDate" Type="DateTime" />
</EntityType>

To implement an abstract entity in the EDM, we need to create an entity
type in our EDM and set its Abstract flag to true. Then, the code
generator will automatically generate an abstract class that corresponds
to this abstract type. Although the designer view requires that an
abstract type should be mapped to a table, there is no such restriction
imposed by the runtime, provided you are working with the generated
CSDL, Mapping Specification Language (MSL), and Store Schema
Definition Language (SSDL) files.

State management, identity management,
and relationship management
Change tracking or tracking the modifications to objects in Entity Framework
is handled by a component called ObjectStateManager. The context delegates
change tracking management calls to this component at runtime. The state manager
is responsible for adding, deleting, and attaching entities to and from the context.
It also holds the in-memory collection of objects, does the necessary identity checks,
and keeps track of relationships of entities. Note that ObjectStateManager is
exposed as a property called ObjectStateManager of ObjectContext.

Here's how the ObjectStateManager instance of the SecurityDBEntities class can
be accessed:

using (SecurityDBEntitiesvar ctx = new SecurityDBEntities())
 {
 var objStateManager = ctx.ObjectStateManager;
 }

Working with the Object Services Layer

[194]

In relational databases, relationships, or associations between the database tables are
defined through the use of foreign keys. A foreign key is just another column in a
database table that is a primary key in another database table. Refer to the image:

Entity Framework defines relationships among entities using associations.
These relationships are defined in the CSDL using an association element. These
associations have two ends—one that describes the entity type and the other that
defines the multiplicity of the type, that is, one-to-one, one-to-many, and so on.
Note that these relationships are governed by the referential integrity constraints as
defined in the database tables from which the EDM has been created in the designer.
The following code snippet shows the CSDL schema of the Security database and
how the associations have been defined there:

 <Association Name="FK_Control_ControlType">
 <End Role="ControlType" Type="Self.ControlType"
 Multiplicity="1" />
 <End Role="Control" Type="Self.Control" Multiplicity="*"
 />
 <ReferentialConstraint>
 <Principal Role="ControlType">
 <PropertyRef Name="ControlTypeID" />
 </Principal>
 <Dependent Role="Control">
 <PropertyRef Name="ControlTypeID" />
 </Dependent>
 </ReferentialConstraint>
 </Association>
 <Association Name="FK_UserRole_Role">
 <End Role="Role" Type="Self.Role" Multiplicity="1" />
 <End Role="UserRole" Type="Self.UserRole"
 Multiplicity="*" />

Chapter 7

[195]

 <ReferentialConstraint>
 <Principal Role="Role">
 <PropertyRef Name="RoleID" />
 </Principal>
 <Dependent Role="UserRole">
 <PropertyRef Name="RoleID" />
 </Dependent>
 </ReferentialConstraint>
 </Association>
 <Association Name="FK_UserAuthentication_User">
 <End Role="User" Type="Self.User" Multiplicity="1" />
 <End Role="UserAuthentication"
 Type="Self.UserAuthentication" Multiplicity="*" />
 <ReferentialConstraint>
 <Principal Role="User">
 <PropertyRef Name="UserID" />
 </Principal>
 <Dependent Role="UserAuthentication">
 <PropertyRef Name="UserID" />
 </Dependent>
 </ReferentialConstraint>
 </Association>

The association between Control and ControlType is defined as shown in the
following code snippet:

public partial class ControlType
 {
 public ControlType()
 {
 this.Controls = new HashSet<Control>();
 }

 public int ControlTypeID { get; set; }
 public string ControlTypeName { get; set; }
 public virtual ICollection<Control> Controls { get; set; }
 }

To let the SecurityDBContext class know the relationship between the ControlType
and Control entities, you can use the following code:

 ((IObjectContextAdapter)context).ObjectContext.
 ObjectStateManager.
 ChangeRelationshipState(controlType, control, c
 => c.ControlType, EntityState.Added);

Working with the Object Services Layer

[196]

However, before you add a relationship, you must delete any preexisting relationship:

 ((IObjectContextAdapter) context).ObjectContext.
 ObjectStateManager.
 ChangeRelationshipState(controlType, control, c
 => c.ControlType, EntityState.Deleted);

Reading objects from the Security
database
There are three ways in which you can load related entities using Entity Framework.
These are—eager loading, lazy loading, and explicit loading. In eager loading, a
query on a particular type of an entity loads the related entities also as part of the
query execution. The following code snippet illustrates how you can implement
eager loading:

using (SecurityDBEntities context = new SecurityDBEntities())
{
 // Load all controls and control types
 var data = context.Controls
 .Include(b => b.ControlTypes)
 .ToList();
}

You can load entities lazily even if lazy loading is disabled by making an explicit call.
This is known as explicit loading and is illustrated in the following code snippet:

using (SecurityDBEntities context = new SecurityDBEntities())
{
 var data = context.Controls.Find(2);
}

Lazy loading is a feature that enables you to load data only at the time when it is
requested. When lazy loading is turned on, an entity or collection of entities is loaded
from the database at the first time a property referring to the entity or collection of
entities is accessed. The following code snippet illustrates how you can load the objects
from the Security data context using lazy loading. Lazy loading (also known as
deferred loading) loads objects late—they are loaded only when they are requested.

using (SecurityDBEntities context = new SecurityDBEntities())
 {
 Control controlObj = new Control
 {

Chapter 7

[197]

 ControlID = 1, ControlName = "ComboBox",
 ControlTypeID = 1, ParentControlID = 1
 };
 context.Controls.Add(controlObj);
 //You can now access the Control and ControlType
 //objects on the newly
 // added object without having to load the
 //references explicitly
 Console.WriteLine("Control ID {0}:",
 controlObj.ControlID);
 Console.WriteLine("Control Type ID {0}:",
 controlObj.ControlTypeID);
 }

You can turn off lazy loading for all entities by turning the
LazyLoadingEnabled property to false as shown in the
following code snippet:

public class SecurityDBEntities : DbContext

{

 public SecurityDBEntities()

 {

 this.Configuration.LazyLoadingEnabled =
false;

 }

}

Inserting objects from the Security
database
The following code shows how you can create your custom data context by deriving
from the SecurityDBEntities class:

public class CustomDBContext : SecurityDBEntities
 {
 public DbSet<Role> Roles { get; set; }
 }

Working with the Object Services Layer

[198]

You can now use the custom data context to add new roles to the database:

using (var context = new CustomDBContext())
 {
 Rolevar role = new Role { RoleID = 1,
 RoleDescription = "Sample" };
 context.Roles.Add(role);
 context.SaveChanges();
 }

Editing objects from the Security
database
Using the custom data context we created in the earlier section, you can edit a role
description using the following code:

using (var context = new CustomDBContext())
 {
 var role = context.Roles.Where(r => r.RoleID ==
 2).FirstOrDefault();
 if (role != null)
 {
 role.RoleDescription = "Updated Role
 Description";
 context.SaveChanges();
 }
 }

Deleting objects from the Security
database
The following code snippet illustrates how you can delete a particular role using
its ID:

using (var context = new CustomDBContext())
 {
 var result = from r in context.Roles where
 r.RoleID == 2 select r;
 if (result.Count() > 0)
 {
 Role role = result.First();

Chapter 7

[199]

 context.Roles.Remove(role);
 context.SaveChanges();
 }
 }

To delete bulk records, you can use a foreach loop as shown in the following
code snippet:

using (var context = new CustomDBContext())
 {
 var result = from r in context.Roles where
 r.RoleID == 2 select r;

 if (result.Count() > 0)
 {
 foreach(Role role in result)
 {
 context.Roles.Remove(role);

 }
 context.SaveChanges();
 }
 }

Summary
Object Service Layer in Entity Framework keeps track of the changes made to
the object and updates the database accordingly. In this chapter, we discussed
Object Services and saw how it can be used to perform CRUD operations against
the EDM. We discussed how we can serialize and deserialize an entity instance.
We implemented a sample application that demonstrated how we can detect and
resolve concurrency conflicts. We also discussed how we can extend, or inherit,
new entities from existing ones and use them in our applications.

In the next chapter of this book, we will take a look at WCF Data Services and
learn how we can use them with Entity Framework in our applications.

[201]

Working with WCF
Data Services

ADO.NET Data Services, formerly known as Project Astoria, comprises a collection
of patterns and libraries that can be used to expose an application's data as a service.
This service can then be consumed by client applications using HTTP calls. You can
use ADO.NET Data Services to isolate the Data Access Layer, and it exposes data via
WCF services to discover, manipulate, and retrieve data in a corporate network. You
can also use ADO.NET Data Services to expose data that is retrieved using the Entity
Data Model as a service and then access this service using WCF service calls over the
HTTP protocol.

WCF Data Services replaces ADO.NET Data Services with more added features.
WCF Data Services (formerly known as ADO.NET Data Services) enables you to
build RESTful services that leverage the Open Data Protocol (OData) to expose
and consume data over the web or intranet.

In this chapter, we will examine the following points:

•	 Understanding REST and RESTful WCF Services
•	 Understanding OData Protocol
•	 An overview of WCF Data Services
•	 Creating a WCF Data Service
•	 Working with Protobuf Services
•	 Guidelines and best practices

Working with WCF Data Services

[202]

Introducing WCF Data Services
Primarily designed in order to separate the presentation layer and data in a REST-
based model, WCF Data Services are used to expose data as a service so it can be
accessed via HTTP requests. You can use the standard HTTP verbs MERGE, GET,
POST, PUT, and DELETE and perform CRUD operations against the service. WCF
Data Services expose the database schema in terms of XML metadata. It uses
Atom and JSON data formats for data transfers over the HTTP protocol.

WCF Data Services isolate the Data Access Layer and expose data via WCF Services.
We do not need to have the presentation layer as a consumer of Data Services. We
could also have another service as occurs in SOA scenarios.

You can use WCF Data Services to expose data through Web Services in terms of
EDM abstractions such as EDM objects. These objects can then be accessed by any
application in much the same way such as a Web Service is accessed.

How do WCF Data Services and Web
Services differ?
The primary difference is that Web Services is based on SOAP and WCF Data
Services is based on a REST-model. While the former defines messages and exposes
them, the latter defines resources and exposes them through URIs. Moreover, unlike
using WSDL to define the endpoint of a service as in a Web Service, the REST-based
model of WCF Data Services uses the query string and the URL string to define the
endpoint's URI. We will take a look at what the REST-based model is in the section
that follows.

What is Representational State Transfer
(REST)?
WCF Data Services uses HTTP as its transport protocol and is based on a REST-
model. In a REST-based model, the application's state and functionality is divided
into resources. These are in turn addressable using URIs over HTTP. REST provides
a stateless, client-server, and a cacheable model for data access. SOAP-based web
service communication, which uses all web service protocols, is much heavier than
REST-based WCF Data Services.

Chapter 8

[203]

Representation State Transfer (commonly known as REST) is an architectural
paradigm that is based on the stateless HTTP protocol and is used to design
applications that can inter-communicate. In REST, resources are used to represent
state and functionality and note that a resource is the most important concept in a
REST-style architecture.

The RESTful Web Services map the HTTP methods to the corresponding CRUD
operations. The following is the list of operations supported in a typical REST-style
architecture:

•	 HTTP method: CRUD action
•	 GET: Retrieve a resource
•	 POST: Create a new resource
•	 PUT: Update an existing resource
•	 DELETE: Delete an existing resource
•	 HEAD: Retrieves metadata information on a resource

RESTful services provide much better performance and scalability and the payload
is much less compared to SOAP-based services. Moreover, you can cache REST reads
but you can't cache SOAP-based reads. You can use many different data formats with
REST-based services while you are constrained to use only XML when working with
SOAP-based (SOAP supports only XML) services.

JAVA PHP .NET

Service Call

GET POST PUT DELETE

RESTful Service

Working with WCF Data Services

[204]

The basic features of a REST-based architecture are:

•	 Resources are used to divide an application's state and its functionality
•	 Resources share a uniform interface and are uniquely addressable

The major benefits of a REST-based approach are as follows:

•	 Improved performance and response time
•	 Improved scalability and interoperability
•	 Reduced KLOC at the client side
•	 Works on top of the HTTP protocol

Why use WCF Data Services?
The primary goal of WCF Data Services is to create a REST-based model to expose
data services. REST is an architecture that is used in distributed hypermedia systems
to transmit domain-specific data over the HTTP protocol. WCF Data Services
provides support for optimistic concurrency to detect data concurrency conflicts.
It uses eTags, which are HTTP response headers in string format, to detect changes.
These e-Tags, which are supported by HTTP 1.1, are used to denote the version or
state of a resource. To find out more on how concurrency is handled by WCF Data
Services, you can refer to the following website: http://msdn.microsoft.com/en-
us/library/cc668770.aspx.

The features at a glance
Here are some of the striking features of WCF Data Services at a glance:

•	 Support for separation of data and presentation layers
•	 Support for a REST model to expose data as a service
•	 Facilitates the creation of a uniform interface
•	 A model-based service contract

Using WCF Data Services, you can declaratively specify the schema of the data.
This includes creating the remote endpoints, automatically, and enabling paging
and sorting of the exposed data without the need to write any code. Moreover, if
you are using WCF Data Services to expose data retrieved through the Entity Data
Model, these remote endpoints will also change accordingly when you change your
Entity Data Model. Added to this, the REST-based model of WCF Data Services
provides you with a uniform interface to access data over HTTP regardless of the
data that is exposed.

http://msdn.microsoft.com/en-us/library/cc668770.aspx
http://msdn.microsoft.com/en-us/library/cc668770.aspx

Chapter 8

[205]

You can define the service operations and interceptors you are using, which allow
you to then define a method on the server that is identifiable using URIs. Next, you
can call that method using the URI specified. You can use the interceptors to plug
your custom validation logic into the request/response pipeline. The best part of
WCF Data Services is that it uses HTTP entry points. In doing so, any HTTP client
application can connect to it and perform CRUD operations.

Exposing data as a service using WCF
Data Services
You have two options to expose data as a service using WCF Data Services:

•	 Use a relational database as the data source
•	 Use a data source other than a relational database

If you are using a relational database as the data source, you can use LINQ to SQL
or Entity Framework to expose the data. On the other hand, you can use collections
of objects as a data source too. In either case, you need to create a WCF Data Service
using the designer. In the next section, we will discuss how we can create an ADO.
NET Data Service.

Why do we need REST?
In a typical client-server communication over a network, a server is connected to one
or more clients using some protocols, that is, HTTP or TCP, and so on.

Response

Network

REST

HTTP

TCP

IP

REST

HTTP

TCP

IP

Request
Server Client

Working with WCF Data Services

[206]

What is REST? Why is it becoming so popular over time? Is REST an alternative to
Web Services? How can I make use of the .NET Framework to implement RESTful
Services? We will answer these questions as we progress through the sections in
this chapter.

REST is an architectural style for designing distributed applications that can
intercommunicate. Note that REST is not a technology or a set of standards. Rather, it
is a set of constraints that can be used to define a new style of architecture. Essentially,
it is a client-server architectural style where the connections are stateless.

The REST architecture style can be applied to other protocols as
well. The word "stateless" applies to HTTP/HTTPS protocols. The
REST architectural style is popular in the HTTP world and gives
better results when used in combination with the HTTP protocol.

REST is not a standard; rather, it is an architectural alternative to RPC and Web
Services. In the REST architectural style, you can communicate among systems
using the HTTP protocol (if HTTP is the protocol in use). Actually, the World Wide
Web (WWW) can be viewed as a REST-based architecture. A RESTful architecture
is based on a cacheable and stateless communication protocol.

REST is an architectural style that divides an application's state and functionality
into resources. These resources are in turn addressable using URIs over HTTP. These
resources have a common interface and are uniquely addressable. A REST-based
model is stateless, client-server based, and cacheable.

As discussed, in a REST-based model, resources are used to represent state and
functionality. Resources are identified through logical URLs. In a typical REST-based
model, the client and the server communicate using requests and responses. The
client sends a request to the server for a resource and the server in turn sends the
response back to the client.

Process Call

HTTP Response

REST Delegate REST Interface REST Client

HTTP Request

Chapter 8

[207]

The main design goals of the REST architectural style include:

•	 Independent deployment of the components
•	 Reduced latency
•	 High security of service interactions
•	 Scalability
•	 High performance

The basic difference between SOAP and REST is that while the former emphasizes on
verbs, the latter emphasizes on resources. In REST, you define resources and then use
a uniform interface to operate on them using HTTP verbs. It should also be noted that
REST is simpler to deal with, since it heavily leverages the HTTP transport mechanism
for formatting, caching, routing, and operations performed on the given resources. On
the contrary, with SOAP, there usually aren't such conventions. A SOAP-based service
can easily be exposed via TCP/IP, UDP, SMTP, or any other transport protocol, and so
it doesn't have to be dependent on the HTTP protocol.

In a REST-based model, a request comprises an endpoint URL, a developer ID,
parameters, and the desired action. The endpoint URL is used to represent the
complete address. The developer ID is a key that uniquely identifies each request's
origin. The desired action is used to denote the action to be performed.

The REST architecture makes use of some common HTTP methods for CRUD
operations. These are as follows:

•	 GET: This is used to request a specific representation of a resource.
•	 HEAD: This is used to retrieve the resource headers only.
•	 PUT: This is used to update a resource.
•	 DELETE: This is used to delete the specified resource.
•	 POST: This is used to submit data that is to be processed by the identified

resource. Ideally, POST should be used only to create resources, while PUT
is used only to update them.

Resources in REST-based architecture
The resource concept is one of the most important ones in REST. A few examples of
public implementations of REST include the following:

•	 Google Fusion Tables
•	 Sones GraphDB—a graph-oriented database written in C#
•	 Nuxeo—an open source document manager

Working with WCF Data Services

[208]

A resource is identified using a URI. In the REST style of architecture, communication
between a server and a client takes place using requests and responses. The client (also
known as the consumer) requests a resource from the server. The server then sends the
response back to the client.

In the REST architectural paradigm, resources are used to represent the state and
functionality of the resources, and they are identified by using logical URIs so that
they can be universally addressable. The REST architecture is essentially based on
HTTP—a stateless protocol. Resources can however be cached as and when needed.
Note that since HTTP provides a cache mechanism, REST implemented on top of
HTTP protocol provides the features and benefits of HTTP. Also, you can set cache
expiration policies for the cached data.

Any REST request comprises the following components:

•	 An endpoint URL: This denotes the complete address of the script.
•	 DeveloperCaller ID: This is a key that is sent with each request. This is used

to identify the origin of the request. Note that the developerCaller ID is not
required for all REST Services.

•	 Parameters: This denotes the parameters of the request. This is optional.
•	 Desired action: This denotes the action for the particular request. Actions are

based on HTTP verbs.

The REST architectural constraints
The REST architectural paradigm defines the following constraints to the architecture:

The client-server model
A RESTful implementation is based on a client-server model. The servers and the
clients are clearly isolated. This implies that the servers and clients can be modified
independent of each other. The server is not at all concerned with the user interface.
Similarly, the user interface is not concerned how data is persisted.

Stateless
The REST architecture is based on the stateless HTTP protocol. In a RESTful
architecture, the server responses can be cached by the clients. Any request from
the client to the server should have enough information so that the request can be
understood and serviced, but no client context would be stored on the server. This
type of design ensures that the servers are more visible for performance monitoring
and are scalable.

Chapter 8

[209]

Cacheable
In a typical REST architecture, the clients should be able to cache data. To manage
cache better, the architecture allows you to set whether or not a response can be
cached. This feature improves scalability and performance.

Code on demand
The servers in a REST architecture can (if needed) extend or customize the
functionality of a particular client. Known as "code on demand," this feature
allows the servers in a REST architecture implementation to transfer logic to
the clients if such a need arises.

The uniform interface
The REST architectural style defines a uniform interface between the clients and the
servers, hence allowing only a limited set of operations defined using the standard
HTTP verbs such as GET, PUT, POST, and DELETE.

Resource management
Resources are identified using unique URIs. Note that resource representations can
exist in any combination of any digital format (HTML, XML, JSON, RSS, and so on).

It should be noted here that the actual resource usually has
only one representation on the server. It is the client that
specifies in which representation it accepts the resources,
that is, how they should be formatted.

REST is an architectural paradigm that is used to model how data is represented,
accessed, and modified on the web. REST uses the stateless HTTP protocol and the
standard HTTP operations (GET, PUT, POST, and DELETE) to perform CRUD operations.
REST allows you to do all that you can do with SOAP and XML-RPC. Added to that,
you can use firewalls for security and also use caching for enhanced performance.

REST attributes
Let's now take a closer look at the WCF REST attributes one by one and their purpose.
Incidentally, all these attributes are available in the System.ServiceModel.Web.dll
library. In this section, we will discuss the attributes that we will frequently make use
of while working with RESTful services.

Working with WCF Data Services

[210]

WebServiceHost
Using the WebServiceHost attribute simplifies hosting web-based services.
It is derived from the ServiceHost class, overrides the OnOpening method, and
automatically adds the WebHttpBehavior class to the endpoint. The following
code snippet illustrates how the WebServiceHost attribute is used:

WebServiceHost var host = new WebServiceHost(typeof(ClassName),
 baseAddress);
WebHttpBindingvar binding = new WebHttpBinding();
host.AddServiceEndpoint(typeof(ISomeContract),
 binding, "WebServiceHost");
host.Open();

WebHttpBinding
The WebHttpBinding attribute produces an appropriate HTTP-based transport
channel. The security here is handled by the WebHttpSecurity class. Services can
be exposed using the WebHttpBinding binding, by using either the WebGet or
WebInvoke attributes.

WebHttpBehavior
The WebHttpBehavior attribute customizes the HTTP-based dispatching logic,
and it overrides operation selection, serialization, and invocation.

WebOperationContext
The WebOperationContext attribute is used to access HTTP specifics within
methods. You can retrieve the current context using the WebOperationContext.
Current property. It provides properties for the incoming/outgoing request/
response context.

The following code snippet illustrates how to get the HTTP status code:

HttpStatusCode status = WebOperationContext.
 Current.IncomingResponse.StatusCode;

Chapter 8

[211]

WebMessageFormat
This attribute is used to control the message format in your services.

You can control the format of your messages using the RequestFormat and
ResponseFormat properties. Here is an example:

[OperationContract]
[WebGet(ResponseFormat = WebMessageFormat.Json, BodyStyle =
 WebMessageBodyStyle.WrappedRequest)]
public Employee GetData()
{
 return new Employee
 {
 Firstname = "Joydip",
 Lastname = "Kanjilal",
 Email = "joydipkanjilal@yahoo.com";
 };
}

The WebGet attribute
The WebGet attribute exposes operations using the GET verb. In other words, the
WebGet attribute is used to map the incoming HTTP GET requests. How this attribute
is defined in the System.ServiceModel.Web namespace is shown in the following
code snippet:

[AttributeUsageAttribute(AttributeTargets.Method)]
public sealed class WebGetAttribute : Attribute,
 IOperationBehavior

An example that illustrates how you can use the WebGet attribute is shown as follows:

[OperationContract]
 [WebGet(UriTemplate="/employee/{id}")]
 public Employee GetEmployee(int id)
 {
 Employee empObj = null;
 // Get employee object from the database
 return empObj;
 }

Working with WCF Data Services

[212]

The WebInvoke attribute
The WebInvoke attribute exposes services that use other HTTP verbs such as POST,
PUT, and DELETE. In other words, the WebInvoke attribute is used for all other HTTP
verbs, other than GET requests. The following code snippet shows how this attribute
is defined in the System.ServiceModel.Web namespace:

[AttributeUsageAttribute(AttributeTargets.Method)]
public sealed class WebInvokeAttribute : Attribute,
 IOperationBehavior

Here is an example that illustrates the use of the WebInvoke attribute:

[OperationContract]
 [WebInvoke(Method = "DELETE", UriTemplate = "/employee/{id}")]
 public void DeleteEmployee(int id)
 {
 // Code to delete an employee record in the database
 }

UriTemplate
The UriTemplate class belongs to System.UriTemplate and implements URI
template syntax that enables you to specify variables in the URI space. UriTemplate
is a class that represents a URI template. UriTemplate is a URI string that contains
variables enclosed by braces ({, }). Note that the UriTemplate property is specified
on the WebGet and WebInvoke attributes we used earlier to identify an employee
resource.

The following code snippet illustrates how UriTemplate is used:

[WebGet(UriTemplate =
 "RetrieveUserDetails/{userCode}/{projectCode}")]
public string RetrieveUserDetails(string userCode,
 string projectCode)
 {

 }

Chapter 8

[213]

REST-based Web Services
A RESTful Web Service (or the RESTful Web API) is a service that comprises a
collection of resources. These resources include a base URI that is used to access
the Web Service, a MIME type (that is, JSON, XML, and so on) and a set of defined
operations (that is, POST, GET, PUT, or DELETE). A RESTful Service is platform and
language neutral. However, unlike a Web Service, there isn't any official standard
set for RESTful Services. The basic advantages of using REST are transport neutrality
and the ability to use advanced WS-* protocols. REST is interoperable, simple to use,
and has a uniform interface.

RESTful Web Services are services that are based on the REST architectural paradigm.
Essentially, these (also known as a RESTful Web API) are Web Services that comprise
a collection of resources. These include:

•	 A base URI used to access the Web Service
•	 A MIME type that defines the format of the data that the Web Service

supports, that is, JSON, XML, and so on
•	 A set of operations that the Web Service supports using the HTTP methods

that include POST, GET, PUT, or DELETE

Similar to Web Services, a REST service is platform and language independent, based
on HTTP, and can be used even with firewalls. Note that unlike Web Services that
are based on the SOAP protocol, there is no official standard for RESTful Services.
REST is simply an architectural style that doesn't have any standards set.

The following code snippet illustrates an example of a SOAP request:

<?xml version = "1.0"?>
<soap:Envelope>
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
 <soap:body emp="http://localhost/payroll">
 <emp:GetEmployeeDetails>
 <emp:EmployeeID>1</emp:EmployeeID>
 </emp:GetEmployeeDetails>
 </soap:Body>
</soap:Envelope>

The following URL shows how the same can be represented using REST:

http://localhost/payroll/EmployeeDetails/1

Working with WCF Data Services

[214]

Software architecture refers to the overall structure of a system and the
interrelationships of entities and components that make up the system. There are
various architectural styles such as object-oriented architecture, service-oriented
architecture, cloud-oriented architecture, and resource-oriented architecture.

Service-oriented architecture (SOA) and resource-oriented architecture (ROA)
are architectural design patterns that provide the concepts and the necessary
development tools and technologies to implement distributed application
architectures. Distributed architectures comprise services that can be used by the
clients over a network using well-defined interfaces. These components that are
used by the clients are called resources in ROA and services in SOA.

What is the OData Protocol?
With the rise in the availability of data, it is extremely important that we keep our
data in a structured format as much as possible. Whether we choose to work on
a mainframe, a mini, a server farm or a PC, a standardized API to deal with the
data in a structured format is needed. If the data is relational, SQL provides a set of
operations to query and also update it. However, not all data is relational. Further,
not all relational data is exposed for use in processing SQL statements or on a wider
perspective over the world-wide Internet.

OData is an open protocol for sharing data and exposing data as a web-friendly
data feed. It provides you with a uniform way of representing structured data
in Atom and JSON formats and a uniform URL for navigation, sorting, filtering,
and paging data retrieved from a Data Service.

The official website for OData states:

"The Open Data Protocol (OData) is a Web protocol for querying and updating
data that provides a way to unlock your data and free it from silos that exist
in applications today. OData does this by applying and building upon Web
technologies such as HTTP, Atom Publishing Protocol (AtomPub) and JSON to
provide access to information from a variety of applications, services, and stores."

The reference is available at http://www.odata.org/.

OData is a web protocol that is used to query and update data. It is a REST-based
protocol that you can use for CRUD operations on your data against resources exposed
as data services. The OData is a new standard that follows the REST architectural style
whose goal is to enable applications to expose data as a service through an intranet or
the web. It relies on HTTP, Atom Publishing Protocol (AtomPub) and JSON. It is the
web-based equivalent of ODBC, OLEDB, ADO.NET, and JDBC.

http://www.odata.org/

Chapter 8

[215]

OData v4 is an OASIS standard and is available for many platforms including iOS and
Android, and OData payloads are based on the Atom and AtomPub formats. Note that
the Organization for the Advancement of Structured Information Standards (OASIS)
is a non-profit international consortium that promotes development, adoption, and
convergence of e-business and Web Service standards. REST doesn't provide details
on what the URLs and the request/response formats should look like. It also doesn't
provide information on the operations and resources that a service provides support
for. OData provides a rich query language and standardizes the request/response
formats in JSON and AtomXml. The rich query language that OData provides enables
service consumers to query your service for exactly the information that is needed.

OData Protocol

OData
Client Library

OData
Data Model

OData Service

OData service returns data in the AtomXml format, though it also supports the JSON
format. If you use OData, you can avoid code duplication and maintenance issues
when working with data—you can write your service once and let your service
consumer dictate how the data needs to be retrieved. In essence, in using OData,
you write your service once and have many different clients consume the data in the
format they need to seamlessly.

In OData, data is provided through URIs and common HTTP verbs such as GET, PUT,
POST, and DELETE:

•	 GET: Get a collection of entries (as a feed document) or a single entry
(as an entry document)

•	 PUT: Update an existing entry with an entry document
•	 POST: Create a new entry from an entry document
•	 DELETE: Remove an entry

Working with WCF Data Services

[216]

OData is a smart application and is implemented by IBM's WebSphere, SQL Server
Azure, Microsoft SharePoint, and Microsoft's "Dallas" information marketplace, to
be the protocol of choice for the Open Government Data Initiative. It is supported
by .NET 4.0 via the WCF Data Services framework. Note that WCF Data Services
(previously known as WCF Data Services) is the implementation of OData in .NET
applications.

It is such a versatile technology that it can also be consumed by Excel's PowerPivot,
plain vanilla JavaScript and Microsoft's own Visual Studio development tool. The
specifications of the OData are published under the license of Microsoft Open
Specification Promise (OSP), which allows third parties (including open source
projects) to develop services for any platform and customers to consume them.
To work with OData, you should have Visual Studio 2013 or later installed on
your system.

OData is a REST-based protocol that uses HTTP, JSON, and ATOM and supports
any platform that has support for HTTP, XML, or JSON. You can use it to expose
data retrieved from relational databases, filesystems, or data services. OData enables
you to perform CRUD operations on top of a data model or a data service. In essence,
it is an HTTP-based, platform-independent protocol that supports REST.

OData
Protocol

OData
Producer

OData
Consumers

In OData, data is provided through the use of URIs and common HTTP verbs
such as GET, PUT, POST, MERGE, and DELETE. Note that WCF Data Services is the
implementation of OData in .NET applications.

The official website of OData exposes data as an OData Service. Here is the service
URL: http://services.odata.org/V3/(S(zldatqoyyeu1ias4w1qhvpqp))/
OData/OData.svc/.

When you open the page in a browser, this is how the XML markup looks:

<service xml:base="http://services.odata.org/Website/odata.svc/">
<workspace>
<atom:title>Default</atom:title>

http://services.odata.org/V3/(S(zldatqoyyeu1ias4w1qhvpqp))/OData/OData.svc/
http://services.odata.org/V3/(S(zldatqoyyeu1ias4w1qhvpqp))/OData/OData.svc/

Chapter 8

[217]

<collection href="ODataConsumers">
<atom:title>ODataConsumers</atom:title>
</collection>
<collection href="ODataProducerApplications">
<atom:title>ODataProducerApplications</atom:title>
</collection>
<collection href="ODataProducerLiveServices">
<atom:title>ODataProducerLiveServices</atom:title>
</collection>
</workspace>
</service>

A collection of entity sets or feeds is referred to as workspace.

Working with WCF Data Services and
Entity Framework
In this section, we will discuss how we can create a WCF Data Service using
Entity Framework and the AdventureWorks database. To add a WCF Data
Service application to an existing web application, follow these steps:

1.	 Create an ASP.NET application:

Working with WCF Data Services

[218]

2.	 Create a new Entity Data Model and name it AdventureWorks:

3.	 Select Code First from database:

Chapter 8

[219]

4.	 In the Entity Data Model Wizard dialog, specify the data connection
properties and click Next:

Working with WCF Data Services

[220]

5.	 Next, choose the database objects you want to be part of the Entity Data Model:

6.	 Now, right-click on the project in the solution explorer window and select
Add New Item.

Chapter 8

[221]

7.	 Select WCF Data Service from the list of the templates displayed, specify a
name, and click OK.

And, you are done! At first glance, the WCF Data Service class looks like this:

using System.Data.Services;
using System.Data.Services.Common;
namespace WCFDataServices
{
 public class CurrencyDataService : DataService< /* TODO: put
 your data source class name here */ >
 {
 // This method is called only once to initialize service-
 wide policies.
 public static void
 InitializeService(DataServiceConfiguration config)
 {
 // TODO: set rules to indicate which entity sets and
 service operations are visible, updatable, etc.
 // Examples:
 // config.SetEntitySetAccessRule("MyEntityset",
 EntitySetRights.AllRead);
 // config.SetServiceOperationAccessRule

Working with WCF Data Services

[222]

 ("MyServiceOperation", ServiceOperationRights.All);
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V3;
 }
 }
}

You will typically need to specify the data context class and configure the data
service behavior. The updated version of the CurrencyDataService class will
look like this:

using System.Data.Services;
using System.Data.Services.Common;
namespace WCFDataServices
{
 public class CurrencyDataService : DataService<AdventureWorks>
 {
 public static void
 InitializeService(DataServiceConfiguration config)
 {
 config.SetEntitySetAccessRule("MyEntityset",
 EntitySetRights.AllRead);
 config.SetServiceOperationAccessRule
 ("MyServiceOperation", ServiceOperationRights.All);
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V3;
 }
 }
}

Working with OData Services using WCF
and ASP.NET MVC Framework
In this section, we will discuss how we can create an OData Service and consume it
from an ASP.NET MVC application. To get started using OData in .NET applications,
you need to first create a WCF Data Service. You can create and use an Entity Data
Model using the ADO.NET Entity Framework template in Visual Studio.

Here are the steps to create an OData Service:

1.	 Create an Entity Data Model or a source of data using LINQ to SQL. You can
also use a custom data model, but it should implement the IUpdateable and
IQueryable interfaces.

Chapter 8

[223]

2.	 Expose the data model as a WCF Data Service.
3.	 Host the WCF Data Service.
4.	 Consume the WCF Data Service in a client application.

To create a WCF Data Service, click on Project | Add New Item and then select WCF
Data Service from the list of the templates displayed. Note that you will need to add
these references to your project:

•	 System

•	 System.Core

•	 System.ServiceModel

•	 System.ServiceModel.Web

•	 System.Data.Services

This is how your data context class will look:

public class CustomerDataContext : DbContext
{
public CustomerDataContext()
: base("CustomerEntitiesConnectionString")
{
}
public CustomerDataContext(string connectionString)
: base(connectionString)
{
}
public DbSet Customers { get; set; }
}

The next step would be to create a WCF Data Service and specify permissions
as appropriate:

public class CustomersDataService : DataService
{
public static void InitializeService(DataServiceConfiguration
config)
{
config.SetEntitySetAccessRule("Customers",
EntitySetRights.AllRead);
config.DataServiceBehavior.MaxProtocolVersion =
DataServiceProtocolVersion.V2;
}
}

Working with WCF Data Services

[224]

To host the WCF Data Service, you can use the following code:

using System;
using System.Collections.Generic;
using System.Data.Services;
using System.Linq;
namespace CustomerODataServiceHost
{
class Program
{
static void Main(string[] args)
{
string WCFServiceAddress = "http://localhost:1012";
Uri[] uriArray = { new Uri(WCFServiceAddress) };
Type serviceType = typeof(CustomerDataService);

using (var host = new DataServiceHost(serviceType, uriArray)) {
host.Open();
Console.WriteLine("Service Started...Press any key to stop
service");
Console.ReadLine();
}
}
}

Now that your data context and data service have been created and configured, we
will examine how we can consume the service. After the WCF Data Service has been
created, you need to add a service reference to the service in your ASP.NET MVC
project if you need to access the OData Service from your ASP.NET MVC application.
Once done, you can use the OData Client library (this is added as soon as you add a
reference to the service) and the service proxy to query data in your controller:

public ActionResult Index()
{
var serviceURI = new Uri("http://customer//view");
var context = new CustomerServiceReference.CustomerDataService(servic
eURI);
var query = from c in context.Customers
where c.Name == "Peter"
select c;
var result = query.ToList();
return View(result);
}

Chapter 8

[225]

Working with Protobuf WCF Services
Protocol Buffers (Protobuf) is a serialization format developed by Google that is fast
and easy to use. Frequently referred to as "Protobuf," the technology consists of a
language- and platform-neutral, extensible, binary format for fast data exchange that
relies on an interface description language, which is compiled to native code. In this
section, we will explore Protobuf and how we can work with Protobuf and Windows
Communication Foundation (WCF), which is Microsoft's unified programming
model for building service-oriented apps.

Protobuf-net is much faster than the other binary serializers available, and is much
faster than BinaryFormatter when it comes to serialization, with a much reduced
payload too.

To work with Protobuf, you need to have the following installed on your system:

•	 Visual Studio 2013 or higher
•	 Protocol Buffers for .NET (Protobuf-net)

You can freely download a copy of Protocol Buffers for .NET from
https://code.google.com/p/protobuf-net/.

Before we delve deep into implementing Protobuf WCF services in .NET, let's take a
quick tour of the basics of Protobuf services: what are they and how they are used.

Protocol Buffers
The idea behind Protocol Buffers is to provide a platform-and language-independent
format for exchanging serialized, structured data. Protocol Buffers are lighter
and faster to handle than XML or JSON. The other major advantages of Protocol
Buffers are:

•	 Reduced size of the data packets
•	 Platform independence
•	 Extensibility

https://code.google.com/p/protobuf-net/

Working with WCF Data Services

[226]

Creating Protobuf-net objects
Note that all Protobuf-net classes are stored in files that have .proto extensions.
You can store one or more proto classes in a .proto file. Here is an example that
illustrates what a typical Protobuf-net class looks like:

package Packt;
message User
{
 required int32 UserID = 1;
 required string UserName = 2;
 required string UserEmail = 3;
 required string Password = 4;
 optional string Address = 5;
}

Note that required in the preceding message implies that it is a mandatory property.
So, UserID, UserName, UserEmail, and Password are mandatory properties. The
Address property is an optional property and is prefixed with the optional keyword.
Note that a message in Protobuf implies a class. If you have a class that contains a
list of objects, you need to use the repeated keyword when defining your Protobuf
classes. Here is an example:

package Packt;
message Customer {
 required string CustomerCode = 1;
 required string FirstName = 2;
 required string LastName = 3;
 repeated Contact ContactList = 4;
}

As you can see, the Customer message contains a list of objects of the type Contact.
The Contact message is defined as follows:

package Packt;
message Contact
{
 required string ContactCode = 1;
 required string Address1 = 2;
 required string Address2 = 3;
 required string Address3 = 4;
 required string Phone = 5;
 required string Email = 6;
}

Chapter 8

[227]

One important thing to note when creating Protobuf-net classes is that each of the
properties of the class should be explicitly numbered, that is, each of them should
have a proper ordering.

Integrating Protobuf.NET with Visual Studio
Protocol Buffers is a binary serialization format that can be used to serialize objects
that are much smaller in size and are portable across various platforms. To integrate
Protobuf.NET with Visual Studio, you can copy the ProtoBuf.zip file from the
protobuf-net installation directory to the Visual Studio installation directory and
then execute the command devenv /installvstemplates to apply the new item
templates. In doing so, you can create Protobuf classes from within your Visual
Studio IDE.

You can also install protobuf-net using the NuGet Package Manager. To install
protobuf-net, execute the following command in the Package Manager console:

Install-Package protobuf-net

Implementing the WCF Service
We will now implement a sample application that makes use of Protobuf WCF
services. To do this, follow these steps:

1.	 Open the Visual Studio IDE.
2.	 Click on File | New | Project.
3.	 Select WCF Service Application from among the list of the project types.
4.	 Save the WCF Service application project with a name of your choice.
5.	 Create data contract classes for this service.
6.	 Create a service contract and a service implementation class for this service.
7.	 Repeat steps 3 and 4 to create another WCF Service application with the

same implementation.

In this example, we will authenticate a user based on the supplied credentials.
We will have one operation contract called AuthenticateUser that accepts
an instance of the AuthenticateUserRequest class and returns an instance
of AuthenticateUserResponse:

 [ServiceContract,ProtoBuf.ProtoContract]
 public interface ISecurity
 {
 [OperationContract]

Working with WCF Data Services

[228]

 AuthenticateUserResponse
 AuthenticateUser(AuthenticateUserRequest userRequestObj);
 }

The complete implementation of the AuthenticateUser operation contract is
given here:

 public AuthenticateUserResponse
 AuthenticateUser(AuthenticateUserRequest userRequestObj)
 {
 AuthenticateUserResponse responseObj = new
 AuthenticateUserResponse();

 if ((userRequestObj.UserID == 1) &&
 (userRequestObj.Password == "Pwd"))
 {
 responseObj.StatusCode = 1;
 responseObj.StatusMessage = "Success";
 responseObj.IsAuthenticated = true;
 }
 else
 {
 responseObj.StatusCode = 2;
 responseObj.StatusMessage = "Not authenticated";
 responseObj.IsAuthenticated = false;
 }

 return responseObj;
 }

Specifying binding information
To consume the WCF Protobuf-net service, you need to specify
protoEndpointBehavior as shown:

 <client>
 <endpoint
 address=""
 binding="wsHttpBinding"
 contract="Packt.Services.ISecurity"
 behaviorConfiguration="protoEndpointBehavior">
 <identity>
 <dns value="localhost"/>
 </identity>
 </endpoint>

Chapter 8

[229]

 </client>
 <extensions>
 <behaviorExtensions>
 <add name="protobuf"
 type="ProtoBuf.ServiceModel.ProtoBehaviorExtension,
 protobuf-net, Version=2.0.0.480, Culture=neutral,
 PublicKeyToken=257b51d87d2e4d67"/>
 </behaviorExtensions>
 </extensions>

Summary
REST is now all set to be the architectural paradigm of choice for designing and
implementing scalable services. It is an architectural paradigm that is based on the
stateless HTTP protocol and is used to design applications that can inter-communicate.
In REST, resources are used to represent state and functionality and these resources
are in turn represented using user-friendly URLs. The RESTful Web Services expose
resources through URIs and use the HTTP methods to perform CRUD operations.
The REST architectural paradigm not only opens up a lot of possibilities, but also
challenges. The OData protocol allows you to query data over the HTTP protocol
and then get the results back in Atom, JSON, or XML formats.

Google's Protocol Buffers is a binary serialization format used for data exchanges.
Protocol Buffer is fast becoming the technology of choice as a popular serialization
format in REST-based WCF services as it is a way of encoding structured data in an
extensible format.

In this chapter, we discussed RESTful WCF Services, OData and how we can work
with RESTful Services, OData, and Entity Framework. We also discussed how we
can work with Protobuf and WCF Services.

[231]

Advanced Concepts
In this chapter we will cover a few advanced concepts. These include: REST and
REST-based service frameworks and OData. We would also explore the HTTP
methods and the request and response codes. Lastly, we will take a look at the
new features in Entity Framework 7.

REST and REST-based service
frameworks
Representation State Transfer (commonly known as REST) is an architectural
paradigm that is based on the stateless HTTP protocol and is used for designing
applications that can intercommunicate. In REST, resources are used to represent state
and functionality, and these resources are in turn represented using user-friendly
URLs. Note that the REST architecture style can be applied to other protocols as well.
The word "stateless" implies the HTTP/HTTPS protocols. The REST architectural style
is popular in the HTTP world and gives better results when used in combination with
the HTTP protocol.

The key goals of REST include the following:

•	 Scalability
•	 Compatibility with other technology and platforms
•	 Generality of interfaces
•	 Discoverability; that is, interconnectivity between resources
•	 Components that can be deployed independently of one another
•	 Reduced latency
•	 Better security
•	 Extensibility

Advanced Concepts

[232]

A RESTful Web API is a web API that conforms to the REST principles. The main
principles of REST include:

•	 Identification of resources
•	 Stateless communication
•	 Manipulation of resources through representations
•	 Self-descriptive messages

In this section, we will examine the popular REST-based service frameworks.

Here is the list of the popular REST-based service frameworks or APIs:

•	 Ruby on Rails
•	 Restlet
•	 Django
•	 Flickr
•	 Google
•	 Yahoo

Ruby on Rails
Ruby on Rails is an optimized open source web application framework that runs on
top of the Ruby programming language. Ruby on Rails follows the basic software
engineering patterns and principles. The Rails Web API is a framework that
facilitates the creation of web applications based on the Model-View-Controller
(MVC) framework. The view layer is composed of "templates," and most of these
templates are HTML-based with embedded Ruby code. The model layer represents
the domain model, the business logic classes, and the data access classes. The
controller layer handles incoming HTTP requests. Note that the Rails controller
can generate XML, JSON, PDFs, and also mobile-specific views. You can get more
information on this framework from http://api.rubyonrails.org/.

Restlet
Restlet provides support for an extensive list of extensions that include the following:

•	 Spring
•	 WADL
•	 XML
•	 JSON
•	 JAX-RS API

http://api.rubyonrails.org/

Appendix

[233]

The benefits of Restlet include the following:

•	 Support for a fully symmetric client and server API
•	 Support for connector protocols other than HTTP
•	 Support for complete URI routing control through the Restlet API
•	 Fast and scalable
•	 Powerful filtering support
•	 Support for a consistent client and server API

You can explore more on this API from http://restlet.org/discover/features.

Django REST
The Django REST framework provides a powerful and flexible API, using which
you can build Web APIs seamlessly. This API provides an extensive documentation
and excellent community support. You can know more about this framework from
http://django-rest-framework.org/.

The Flickr REST API
The Flickr REST API is simple and easy to use. Flickr also has some JSON APIs that
you might make use of for invoking the API through JavaScript. You can get more
information about this from http://www.flickr.com/services/api/request.
rest.html.

The Google API
The Custom Search JSON/Atom API from Google enables developers to write
applications that can leverage this API and retrieve and display custom search
in the applications. This API allows you to use RESTful calls for web search and
get the results in JSON or Atom format. You can know more on this API from
https://developers.google.com/custom-search/json-api/v1/overview.

Note that Google provides a much wider range of API services than APIs, such as
Google Maps, AdWords, Translate, Google Analytics, and so on.

http://restlet.org/discover/features
http://django-rest-framework.org/
http://www.flickr.com/services/api/request.rest.html
http://www.flickr.com/services/api/request.rest.html
https://developers.google.com/custom-search/json-api/v1/overview

Advanced Concepts

[234]

Yahoo Social REST APIs
The Yahoo Social REST APIs provide a collection of URI resources that can provide
access to the following:

•	 Users' profiles
•	 Status messages
•	 Status updates

These URIs are actually grouped into APIs, depending on the information that they
return. For more information, you can refer to http://developer.yahoo.com/
social/rest_api_guide/web-services-intro.html.

Exploring OData
The Open Data Protocol (OData) is a protocol that is built on web standards, such as
HTTP, Atom, and JSON, and standardizes how data is exposed and consumed. It is a
data access protocol that provides a uniform way of performing CRUD operations on
the data. It is used to expose and access information from different data sources; that is,
relational databases, filesystems, content management systems, and so on.

OData Protocol

OData
Client Library

OData
Data Model

OData Service

OData is a standardized protocol that builds on top of core protocols, such as HTTP
and architecture paradigms, such as REST. Like RSS, Atom is a way to expose feeds.
Note that AtomPub makes use of HTTP verbs such as GET, POST, PUT, and DELETE,
to facilitate the publishing of data. OData v4 is now an OASIS standard. It is an open
protocol that enables the creation and consumption of queryable and interoperable
RESTful APIs.

http://developer.yahoo.com/social/rest_api_guide/web-services-intro.html
http://developer.yahoo.com/social/rest_api_guide/web-services-intro.html

Appendix

[235]

OData
Protocol

OData
Producer

OData
Consumers

OData is a REST-based protocol that uses HTTP, JSON, and ATOM, and supports
any platform that has support for HTTP, XML, or JSON. You can use it to expose
data retrieved from relational databases, filesystems, or data services. OData enables
you to perform CRUD operations on top of a data model or a data service. In essence,
it is an HTTP-based, platform-independent protocol that supports REST. In OData,
data is provided through the usage URIs and common HTTP verbs, such as GET, PUT,
POST, MERGE, and DELETE. Note that WCF Data Services (previously known as ADO.
NET Data Services) is the implementation of OData Protocol in .NET applications.

The official website of OData Protocol exposes data as an OData Service. The service
URL is http://services.odata.org/website/odata.svc.

When you open the page in a browser, this is what the XML markup looks like:

<service xml:base="http://services.odata.org/Website/odata.svc/">
<workspace>
<atom:title>Default</atom:title>
<collection href="ODataConsumers">
<atom:title>ODataConsumers</atom:title>
</collection>
<collection href="ODataProducerApplications">
<atom:title>ODataProducerApplications</atom:title>
</collection>
<collection href="ODataProducerLiveServices">
<atom:title>ODataProducerLiveServices</atom:title>
</collection>
</workspace>
</service>

http://services.odata.org/website/odata.svc

Advanced Concepts

[236]

HTTP methods, request, and response
codes
The following table shows the common HTTP methods and their purposes:

Method name Purpose
DELETE This is used to delete a resource
GET This is used to request a specific representation of a resource
HEAD This is same as GET, but it retrieves only the headers and not the body
OPTIONS This is used to retrieve the methods supported by the resource
POST This is used to post or submit data to be processed by the resource
PUT This is used to create or update data using a particular representation

of a resource

The following table shows the HTTP status codes and their purposes:

Status code Description
100 Informational
200 Successful
201 Created
202 Accepted
300 Redirection
304 Not modified
400 Client error
402 Payment required
404 Not found
405 Method not allowed
500 Server error
501 Not implemented

Appendix

[237]

The following table shows the HTTP redirection status codes:

Status code Description
300 Multiple choices
301 Moved permanently
302 Found (temporary redirection)

The following table shows the HTTP error status codes:

Status code Description
400 Bad request
401 Unauthorized
403 Forbidden
404 Resource not found
405 Method not allowed
408 Request timeout
409 Conflict
413 Request entity too large
415 Unsupported media type

The following table shows the HTTP server error status codes:

Status code Description
500 Internal server error
501 Not implemented
503 Service unavailable
505 HTTP version not supported

The following table lists some resource methods and how they can be implemented
using the HTTP protocol:

Method name Description HTTP operation
createResource This creates a new resource PUT

getResource
Representation

This is used to retrieve the
representation of a particular resource

GET

deleteResource This deletes a resource DELETE

modifyResource This modifies a resource POST

getMetaInformation This retrieves metadata of a resource HEAD

Advanced Concepts

[238]

Abbreviations
•	 HTTP: HyperText Transfer Protocol
•	 ROA: Resource Oriented Architectures
•	 SOA: Service Oriented Architectures
•	 SOAP: Simple Object Access Protocol
•	 REST: Representational State Transfer
•	 RPC: Remote Procedure Call
•	 URL: Uniform Resource Locator
•	 W3C: World Wide Web Consortium
•	 WSDL: Web Service Description Language
•	 XML-RPC: XML Remote Procedure Call

New features in Entity Framework 7
Entity Framework 7, a major redesign of the ORM, is the latest version of Entity
Framework with the vision of "New Platforms, New Data Stores."

Some of the striking features of this release include support for the following:

•	 Non-relational data stores and in-memory data: You can now use Entity
Framework with NoSQL databases as well.
Entity Framework 7 now provides support for the following data providers:

°° SQL Server
°° SQLite
°° Azure Table Storage
°° Redis
°° In Memory (for unit testing)

•	 Windows Phone and Windows Store applications, Linux, and Macintosh
systems: Entity Framework 7 now provides support for Windows Phone,
Windows Store, ASP.NET 5, and desktop applications.

•	 Unit testing: Entity Framework 7 now provides support for unit testing
your applications against in-memory or memory-resident databases.

You can refer to this Channel 9 video to know more on Entity Framework 7:
https://channel9.msdn.com/Events/Build/2015/2-693.

https://channel9.msdn.com/Events/Build/2015/2-693

Appendix

[239]

Suggested reading
•	 http://www.infoworld.com/article/2924201/microsoft-net/best-

practices-to-improve-entity-framework-performance.html

•	 http://www.infoworld.com/article/2883125/c-sharp/new-features-
in-c-6.html

•	 http://www.infoworld.com/article/2934465/microsoft-net/best-
practices-in-optimizing-linq-performance.html

•	 Stephen Walther has a nice article on using Entity Framework 7 with ASP.
NET 5 and AngularJS. Here's the link: http://stephenwalther.com/
archive/2015/01/17/asp-net-5-and-angularjs-part-4-using-entity-
framework-7

http://www.infoworld.com/article/2924201/microsoft-net/best-practices-to-improve-entity-framework-performance.html
http://www.infoworld.com/article/2924201/microsoft-net/best-practices-to-improve-entity-framework-performance.html
http://www.infoworld.com/article/2883125/c-sharp/new-features-in-c-6.html
http://www.infoworld.com/article/2883125/c-sharp/new-features-in-c-6.html
http://www.infoworld.com/article/2934465/microsoft-net/best-practices-in-optimizing-linq-performance.html
http://www.infoworld.com/article/2934465/microsoft-net/best-practices-in-optimizing-linq-performance.html
http://stephenwalther.com/archive/2015/01/17/asp-net-5-and-angularjs-part-4-using-entity-framework-7
http://stephenwalther.com/archive/2015/01/17/asp-net-5-and-angularjs-part-4-using-entity-framework-7
http://stephenwalther.com/archive/2015/01/17/asp-net-5-and-angularjs-part-4-using-entity-framework-7

[241]

Index
A
ADO.NET Data Services 201
ADO.NET Entity Client

connection, opening 134-137
connection string, building 133, 134
entity connection string, building 134
queries, executing with entity

command 135, 136
working with 131-133

ADO.NET Entity Data Model 2
ADO.NET Entity Data Model Designer

used, for creating EDM 35-41
ADO.NET Entity Framework
benefits 21
components 11
features 21
system requisites 22
versus ORM tools 7

ADO.NET Entity Framework 6
enhancements 22-28

aggregate canonical functions,
E-SQL 128, 129

associations 63
association sets 63
Atom Publishing Protocol (AtomPub) 214
auto-compiled queries 29

B
bitwise canonical functions, E-SQL 129

C
canonical functions, E-SQL

about 128

aggregate 128, 129
bitwise 128, 129
date and time 128-130
mathematical 128
string 128, 129

code-first approach
about 90, 183
using 184, 185

collection 126
complex joins

avoiding, Entity SQL used 19
complex types

implementing, in EDM 192, 193
components, ADO.NET Entity Framework

Entity client 17
Entity Data Model (EDM) 12-15
Entity SQL 18
LINQ to Entities 17
Object Model (O-Space) 16, 17
Object Services Layer 20

components, REST request
desired action 208
DeveloperCaller ID 208
endpoint URL 208
parameters 208

Conceptual Model Layer 12
Conceptual Schema Definition

Language (CSDL) 72
concurrency conflicts 182
containment 64
create function

mapping, to entities 111
CRUD operations

about 31
performing, on objects 177, 178

Custom Search JSON/Atom API 233

[242]

D
data

querying, as in-memory objects 176
querying, LINQ to Entities used 151
querying, LINQ used 158-161

Data Access Objects (DAO) 7
database
creating, model-first development

used 90-104
database-first approach

about 91, 184
using 188

data binding 44
data-centric applications 3-5
data model 3
data paging, E-SQL 130
DataSource controls

about 31, 44
EntityDataSource 46
LinqDataSource 46
ObjectDataSource 44
SiteMapDataSource 45
SqlDataSource 45
XMLDataSource 45

date and time canonical functions,
E-SQL 130

DbContext class, SecurityDbEntity 174, 175
DbContext Fluent Generator

URL, for downloading 85
deferred execution 166
deferred loading 23
delete function

mapping, to entities 111
derived entity types

creating 61-63
Django REST

about 233
URL 233

domain-driven design (DDD) 90
domain modeling 7
domain modeling approaches,

Entity Framework
code-first approach 90
database-first approach 91
model-first approach 90

Dynamic LINQ (DLINQ) 148

E
eager loading

about 142
example 142

EdmGen
used, for creating EDM 41-43

EdmGen.exe command-line tool
options 42

enhancements, ADO.NET Entity
Framework 6

about 22
other enhancements 27
spatial data types support 27
support, for better n-tier support 24
support, for built-in functions 25
support, for code-first, model-first,

and database-first approaches 24
support, for custom code first

conventions 28
support, for lazy loading 23
support, for model-defined functions 25
support, for persistence ignorance 22
support, for POCO change tracking 23
support, for stored procedures and

functions in code first 28
support, for T4 code generation 23
support, for UDF support 25
task-based asynchronous operation 28

entities
about 56
create function, mapping to 111
delete function, mapping to 111
properties 56
update function, mapping to 111

entity classes 11, 85, 86
Entity client 17
EntityCommand

native SQL, retrieving from 139
entity containers 65-67
entity data

retrieving, from Security database 168, 169
Entity Data Model (EDM)

about 6, 12, 56
complex types, implementing in 192, 193
create function, mapping to entities 111
creating 34

[243]

creating, ADO.NET Entity Data Model
Designer used 35-41

creating, EdmGen used 41-43
delete function, mapping to entities 111
entity sets, deleting in 57-61
layers 13, 14
representation 15
stored procedures, mapping to

functions 108-111
update function, mapping to entities 111
used, for executing stored

procedures 113, 114
EntityDataSource control

about 46
reference link 46

Entity Framework
about 1
and LINQ to Entities 151
online resources 239
used, for implementing application 46-53
working with 217-222

Entity Framework 6
performance improvements 28, 29

Entity Framework 6.x 3
Entity Framework 7

new features 30, 238
providers 177
using 176

Entity Framework, and other ORM tools
comparative analysis 7-9

entity instances
deserializing 180-182
serializing 180-182

EntityKey 57
Entity Model browser, Security EDM 70, 71
Entity-Relationship model 56
entity sets

deleting, in EDM 57-61
entity types

extending 61-63
E-SQL

about 117-119
additional operations 138
canonical functions 128
data paging 130
expressions 124

features 120
identifiers 125
need for 119
operators 121
transaction management 140, 141
types 126
used, for avoiding complex joins 19
used, for inserting record 138
variables 126

explicit loading 196
expressions, E-SQL

about 124
query 124

expressions, LINQ to Entities
about 161
comparison expressions 162, 163
constant expressions 162
deferred query execution 166-168
immediate query execution 166-168
initialization expressions 164
navigation properties 165, 166
null comparisons 165

F
factory classes 7
Flickr REST API

about 233
URL 233

Fluent NHibernate 7
foreign key constraint

record, inserting with 139
functions

stored procedures, mapping to 108-111

G
geography data type 27
geometry data type 27
Google API

about 233
URL 233

H
HTTP error status codes 237
HTTP methods

DELETE 236

[244]

GET 236
HEAD 236
OPTIONS 236
POST 236
PUT 236

HTTP methods for CRUD operations,
REST architecture

DELETE 207
GET 207
HEAD 207
POST 207
PUT 207

HTTP protocol
resource methods 237

HTTP redirection status codes 237
HTTP server error status codes 237
HTTP status codes

purposes 236

I
identifiers, E-SQL

quoted 125
simple 125

identity management 193-196
inheritance, EDM

Table-per-Concrete Class (TPC) 62
Table-per-Hierarchy Model (TPH) 62
Table-per-Type Model (TPT) 62

inheritance, Entity Framework
about 188
Table per Concrete Type (TPC) 189-191
Table per Hierarchy (TPH) 188-190
Table per Type (TPT) 188, 190

in-memory objects
about 172
data, querying as 176

J
join table 68

K
Kilo Lines of Code (KLOC) 21

L
layers, Entity Data Model (EDM)

Conceptual layer 14
C-S Mapping Layer 14
Logical layer 14

layers, Security EDM
CSDL schema 72-79
MSL schema 81, 84
SSDL schema 79

lazy loading
about 23, 142
example 142
URL 23

LINQ
about 10, 145, 146
forms 10
need for 146
operators 153
used, for querying data 158-161

LINQ architecture 147
LinqDataSource control 46
LINQ to DataSet 10
LINQ to Entities

about 10, 17, 119, 145, 150
and Entity Framework 151
expressions 161, 162
used, for querying data 151
versus LINQ to SQL 152, 153

LINQ to Objects 149, 150
LINQ to SQL

about 5, 10, 11, 148, 149
versus LINQ to Entities 152, 153

LINQ to XML 10, 148
Logical Model Layer 12

M
Mapping Details window,

Security EDM 68-70
Mapping Layer 12
mathematical canonical functions,

E-SQL 128
Microsoft Open Specification

Promise (OSP) 216
model-driven approach 25

[245]

model-first approach
about 90, 183
using 185-187

model-first development
used, for creating database 90-104

Model-View-Controller (MVC) 232
multiplicity 65

N
native SQL

retrieving, from EntityCommand 139
new features, Entity Framework 7 30
NHibernate 7
no entity set

stored procedures, mapping with 113

O
ObjectContext class

EntityConnection instance,
encapsulating 173

MetadataWorkspace instance,
encapsulating 173

objects, attaching to 178-180
objects, detaching from 178-180
ObjectStateManager instance,

encapsulating 173
used, for modifying identity resolution 182
used, for modifying tracking 182

ObjectDataSource control 44
Object Model (O-Space) 16, 17
Object Query object 21
Object Relational Mapping (ORM) 1, 4
objects

attaching, to ObjectContext class 178-180
CRUD operations, performing on 177, 178
deleting, from Security database 198
detaching, from ObjectContext

class 178-180
editing, from Security database 198
inserting, from Security database 197
reading, from Security database 196, 197

Object Services
about 172
features 174

Object Services Layer 20

OData Service
creating 222, 223

Open Data Protocol (OData)
about 201, 214
exploring 234, 235
HTTP verbs 215
URL 214

operations, REST-style architecture
DELETE method 203
GET method 203
HEAD method 203
HTTP method 203
POST method 203
PUT method 203

operators, E-SQL
about 121
arithmetic 121
case 121
comparison 121, 122
logical 121, 122
operator precedence 124
reference 121, 122
set 121, 123
type 121, 123

operators, LINQ
about 153
aggregation 154
conversion 157
element 157
ordering 155
projections 155
quantifiers 156
restriction 156
set 158

Organization for the Advancement
of Structured Information
Standards (OASIS) 215

ORM tools
versus ADO.NET Entity Framework 7

P
Parallel Extensions Library

about 153
Parallel LINQ (PLINQ) 153
Task Parallel Library (TPL) 153
URL 153

[246]

Parallel LINQ 153
performance improvements,

Entity Framework 6 28, 29
persistence ignorance 22
Plain Old CLR Objects (POCO) 22
Project Astoria 201
Protobuf.NET

integrating, with Visual Studio 227
Protobuf-net objects

creating 226
Protobuf WCF services

implementing 227
working with 225

Protocol Buffers (Protobuf)
about 225
advantages 225
URL 225

Q
query expressions, E-SQL

FROM 124
GROUP BY 125
HAVING 124
ORDER BY 125
SELECT 124
WHERE 124

quoted identifiers 125

R
record

inserting, E-SQL used 138
inserting, with foreign key constraint 139

reference 127
relational store 3
relationship 63
relationship management 193-196
Remote Data Objects (RDO) 7
resource-oriented architecture (ROA) 214
resources, REST-based architecture 207
REST

about 203, 231
goals 231
need for 206

REST architectural constraints
about 208
cacheable 209
client-server model 208
code on demand 209
resource management 209
stateless 208
uniform interface 209

REST architectural style
design goals 207

REST attributes
about 209
UriTemplate 212
WebGet 211
WebHttpBehavior 210
WebHttpBinding 210
WebInvoke 212
WebMessageFormat 211
WebOperationContext 210
WebServiceHost 210

REST-based architecture
benefits 204
features 204
resources 207

REST-based service frameworks
Django REST 233
Flickr REST API 233
Google API 233
Restlet 232
Ruby on Rails 232
Yahoo Social REST APIs 234

REST-based Web Services 213, 214
RESTful services 203
RESTful Web API 232
Restlet

about 232
benefits 233
URL 233

REST request
components 208

REST-style architecture
operations 203

row 126
Ruby on Rails

about 232
URL 232

[247]

S
Security database

entity data, retrieving from 168, 169
objects, deleting from 198
objects, editing from 198
objects, inserting from 197
objects, reading from 196, 197

Security database, tables
Controls 34
ControlTypes 34
Roles 34
UserAuthenticationTypes 33
UserRoles 34
Users 33
UsersAuthentication 33
UsersLoginHistory 34

SecurityDbEntity
DbContext class 174, 175

Security EDM
EDM layers 72
entity classes 85, 86
Entity Model browser 70, 71
exploring 67, 68
Mapping Details window 68-70

serialization 180
service-oriented architecture (SOA) 214
simple identifiers 125
SiteMapDataSource control 45
spatial data types

URL 27
SQL 118
SqlDataSource control

about 45
reference link 45

state management 193-195
stored procedures

creating 105-107
executing, EDM used 113, 114
mapping, that return custom entity

types 114-116
mapping, to functions 108-111
mapping, with no entity set 113

Store Schema Definition Language
(SSDL) 15

string canonical functions, E-SQL 129

T
T4 code generation 23
Table per Concrete Type (TPC) 189-191
Table per Hierarchy (TPH) 188-190
Table per Type (TPT) 188-190
transaction 140
transaction management, E-SQL 140
Transact SQL (T-SQL) 117, 118
types, E-SQL

about 126
collection 126, 127
reference 127
row 126

U
update function

mapping, to entities 111
UriTemplate class 212
user authentication database

designing 33

V
variables, E-SQL 126
Visual Studio

Protobuf.NET, integrating with 227

W
WCF Data Services

about 202
creating 223
data, exposing as service 205
features 204
hosting 224
need for 204
versus Web Services 202
working with 217-222

WCF Protobuf-net service
consuming 228

WebGet attribute 211
WebHttpBehavior attribute 210
WebHttpBinding attribute 210
WebInvoke attribute 212
WebMessageFormat attribute 211

[248]

WebOperationContext attribute 210
WebServiceHost attribute 210
Web Services

versus WCF Data Services 202
Windows Communication Foundation

(WCF) 225

X
XLINQ 148
XMLDataSource control 45

Y
Yahoo Social REST APIs

about 234
URL 234

Thank you for buying
Entity Framework Tutorial
Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Mastering Entity Framework
ISBN: 978-1-78439-100-3 Paperback: 304 pages

Effortlessly produce data-driven applications for
.NET to address the competing demands of data
storage and data modeling with Entity Framework

1.	 Understand everything that requires to
effectively start developing and managing data
driven applications using Entity Framework.

2.	 Implement an example-based approach
to understand various concepts associated
with Entity Framework.

WCF Multi-layer Services
Development with Entity
Framework
Fourth Edition
ISBN: 978-1-78439-104-1 Paperback: 378 pages

Create and deploy complete solutions with WCF and
Entity Framework

1.	 Build SOA applications on Microsoft platforms.

2.	 Apply best practices to your WCF services and
utilize Entity Framework to access underlying
data storage.

3.	 A step-by-step, practical guide with nifty
screenshots to create six WCF and Entity
Framework solutions from scratch.

Please check www.PacktPub.com for information on our titles

Code-First Development
with Entity Framework
ISBN: 978-1-78439-627-5 Paperback: 174 pages

Take your data access skills to the next level with
Entity Framework

1.	 Learn how to create, retrieve, update, and
delete the data in a relational database
using .NET.

2.	 Choose from an array of examples in C# and
VB.NET that showcase the key concepts of
Entity Framework.

3.	 This is a fast-paced, practical guide based
on the code-first approach for the Entity
object-relational mapper.

Entity Framework 4.1:
Expert's Cookbook
ISBN: 978-1-84968-446-0 Paperback: 352 pages

More than 40 recipes for successfully mixing
Test Driven Development, architecture, and
Entity Framework Code First

1.	 Hands-on solutions with reusable
code examples.

2.	 Strategies for enterprise ready usage.

3.	 Examples based on real world experience.

4.	 Detailed and advanced examples of
query management.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing the ADO.NET Entity Framework
	What you should know
	Looking back
	What is the ADO.NET Entity Framework?
	Is Entity Framework just another ORM?

	A comparative analysis of Entity Framework and other ORM tools
	LINQ to SQL and .dbml files

	Entity Framework architectural components
	The Entity Data Model
	How is the EDM represented?
	The Object Model (O-Space)
	LINQ to Entities
	Entity Client
	Entity SQL
	Avoiding complex joins

	The Object Services Layer
	Features and benefits at a glance

	System requirements
	Support for persistence ignorance
	Support for T4 code generation
	Support for lazy loading
	Support for POCO change tracking
	Better n-tier support with self-tracking entities
	Support for code-first, model-first, and database-first approaches
	Support for built-in functions and UDF support
	Support for model-defined functions
	Enum support
	Spatial data types support
	Other enhancements

	Performance improvements in Entity Framework 6
	New features in Entity Framework 7
	Summary

	Chapter 2: Getting Started
	Designing the UserAuthentication database
	Creating the EDM
	Creating the Entity Data Model using the
ADO.NET Entity Data Model Designer
	Creating Entity Data Model using the
EdmGen tool

	The DataSource controls
	The ObjectDataSource control
	The SqlDataSource control
	The SiteMapDataSource control
	The XMLDataSource control
	The LinqDataSource control
	The EntityDataSource control

	Implementing our first application using the Entity Framework
	Summary

	Chapter 3: Entities, Relationships, and the Entity Data Model
	Entities, entity types, and relationships in the EDM
	What is an entity?
	Defining entity sets in the EDM
	Extending the existing entity types to create derived entity types
	Association sets, associations, containment, and multiplicity
	What are entity containers?

	Exploring the Security EDM
	The Mapping Details window
	The Entity Model browser
	The EDM layers
	The CSDL schema
	The SSDL schema
	The MSL schema

	Entity classes

	Summary

	Chapter 4: Working with
Stored Procedures in
the Entity Data Model
	Creating a database using model-first development
	Creating stored procedures
	Mapping stored procedures to functions in the EDM
	Mapping the create, update, and delete functions to entities in the EDM
	Mapping stored procedures with no entity set

	Executing stored procedures using
the EDM
	Mapping stored procedures that return custom entity types
	Summary

	Chapter 5: Working with Entity Client and Entity SQL
	An overview of the E-SQL language
	From T-SQL to E-SQL
	Why E-SQL when I already have LINQ to Entities?
	Features of E-SQL
	Operators in E-SQL
	Arithmetic operators
	Comparison operators
	Logical operators
	Reference operators
	Type operators
	Set operators
	Operator precedence

	Expressions in E-SQL
	Query expressions in E-SQL

	Identifiers, variables, parameters, and types
in E-SQL
	Row
	Collections
	Reference

	Canonical functions in E-SQL
	Mathematical functions
	Aggregate functions
	String functions
	Bitwise functions
	The date and time functions

	Data paging using E-SQL
	Working with the ADO.NET Entity Client
	Let's get into action
	Building the connection string
	Creating an entity connection
	Opening the connection
	Executing queries using the entity command
	Closing the connection

	Other operations with E-SQL
	Inserting a record using E-SQL
	Inserting a record with a foreign key constraint
	Retrieving native SQL from EntityCommand
	Transaction management in E-SQL

	Deferred, eager, and lazy loading
	Summary

	Chapter 6: Working with LINQ to Entities
	Introducing LINQ
	Why LINQ?

	Understanding the LINQ architecture
	LINQ to XML
	LINQ to SQL
	LINQ to Objects
	LINQ to Entities
	Querying data using LINQ to Entities
	LINQ to Entities and Entity Framework
	Differences between LINQ to Entities and LINQ
to SQL

	Parallel LINQ
	Operators in LINQ
	Aggregation
	Projections
	Ordering
	Quantifiers
	Restriction
	Conversion
	Element
	Set

	Querying data using LINQ
	Expressions in LINQ to Entities
	Constant expressions
	Comparison expressions
	Initialization expressions
	Null comparisons
	Navigation properties
	Immediate and deferred query execution
	Retrieving entity data from the Security database

	Summary

	Chapter 7: Working with the Object Services Layer
	What are Object Services?
	Features at a glance
	The SecurityDbEntity's DbContext class
	Querying data as in-memory objects
	Using Entity Framework 7

	Performing CRUD operations on objects
	Attaching and detaching objects to and from ObjectContext
	Serializing and deserializing entity instances
	Change tracking and identity resolution using ObjectContext
	Understanding the code-first, model-first, and database-first approaches to domain design
	Using the code-first approach
	Using the model-first approach
	Using the database-first approach

	Inheritance in Entity Framework
	Table-per-Hierarchy
	Table-per-Type
	Table-per-Concrete Type

	Implementing complex types in the EDM
	State management, identity management, and relationship management
	Reading objects from the Security database
	Inserting objects from the Security database
	Editing objects from the Security database
	Deleting objects from the Security database
	Summary

	Chapter 8: Working with WCF
Data Services
	Introducing WCF Data Services
	How do WCF Data Services and Web
Services differ?
	What is Representational State Transfer (REST)?
	Why use WCF Data Services?
	The features at a glance

	Exposing data as a service using WCF Data Services
	Why do we need REST?
	Resources in REST-based architecture
	The REST architectural constraints
	The client-server model
	Stateless
	Cacheable
	Code on demand
	The uniform interface
	Resource management

	REST attributes
	WebServiceHost
	WebHttpBinding
	WebHttpBehavior
	WebOperationContext
	WebMessageFormat
	The WebGet attribute
	The WebInvoke attribute
	UriTemplate

	REST-based Web Services

	What is the OData Protocol?
	Working with WCF Data Services and Entity Framework
	Working with OData Services using WCF and ASP.NET MVC Framework
	Working with Protobuf WCF Services
	Protocol Buffers
	Creating Protobuf-net objects
	Integrating Protobuf.NET with Visual Studio
	Implementing the WCF Service
	Specifying binding information

	Summary

	Appendix: Advanced Concepts
	REST and REST-based service frameworks
	Ruby on Rails
	Restlet
	Django REST
	The Flickr REST API
	The Google API
	Yahoo Social REST APIs
	Exploring OData

	HTTP methods, request, and response codes
	Abbreviations
	New features in Entity Framework 7
	Suggested reading

	Index

